Representation of the space of polyanalytic functions as the direct sum of orthogonal subspaces. Application to rational approximations
Matematičeskie zametki, Tome 66 (1999) no. 5, pp. 741-759.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_66_5_a10,
     author = {A. K. Ramazanov},
     title = {Representation of the space of polyanalytic functions as the direct sum of orthogonal subspaces. {Application} to rational approximations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {741--759},
     publisher = {mathdoc},
     volume = {66},
     number = {5},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_5_a10/}
}
TY  - JOUR
AU  - A. K. Ramazanov
TI  - Representation of the space of polyanalytic functions as the direct sum of orthogonal subspaces. Application to rational approximations
JO  - Matematičeskie zametki
PY  - 1999
SP  - 741
EP  - 759
VL  - 66
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_66_5_a10/
LA  - ru
ID  - MZM_1999_66_5_a10
ER  - 
%0 Journal Article
%A A. K. Ramazanov
%T Representation of the space of polyanalytic functions as the direct sum of orthogonal subspaces. Application to rational approximations
%J Matematičeskie zametki
%D 1999
%P 741-759
%V 66
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_66_5_a10/
%G ru
%F MZM_1999_66_5_a10
A. K. Ramazanov. Representation of the space of polyanalytic functions as the direct sum of orthogonal subspaces. Application to rational approximations. Matematičeskie zametki, Tome 66 (1999) no. 5, pp. 741-759. http://geodesic.mathdoc.fr/item/MZM_1999_66_5_a10/

[1] Balk M. B., Polyanalytic Functions, Akad. Verlag, Berlin, 1991 | Zbl

[2] Dolzhenko E. P., “O granichnom povedenii komponent polianaliticheskoi funktsii”, Dokl. RAN, 338:5 (1994), 585–588 | Zbl

[3] Dolzhenko E. P., Danchenko V. I., “O granichnom povedenii reshenii obobschennogo uravneniya Koshi–Rimana”, Algebra i analiz, Tezisy dokl. konferentsii, posvyaschennoi 100-letiyu B. M. Gagaeva, Kazan, 1997, 70–73

[4] Dolzhenko E. P., Danchenko V. I., “O granichnom povedenii proizvodnykh polianaliticheskikh funktsii”, Sovremennye problemy teorii funktsii, Tezisy dokl. 9-i Saratovskoi zimnei shkoly, Saratov, 1997, 54

[5] Dolzhenko E. P., “O granichnom povedenii komponent polianaliticheskoi funktsii”, Matem. zametki, 63:6 (1998), 821–834 | MR | Zbl

[6] Dolzhenko E. P., Danchenko V. I., “O granichnom povedenii reshenii obobschennogo uravneniya Koshi–Rimana”, Vestn. MGU. Ser. 1. Matem., mekh., 1998, no. 3, 16–25 | MR | Zbl

[7] Ramazanov A. K., “Predstavlenie prostranstva polianaliticheskikh funktsii v vide pryamoi summy ortogonalnykh podprostranstv”, Mezhdunarodnaya konf. po teorii priblizheniya funktsii, posvyaschennaya pamyati P. P. Korovkina, Tez. dokl., Kaluga, 1996, 178–179

[8] Koshelev A. D., “Ob kern funktsii dlya gilbertovo prostranstva polianaliticheskikh funktsii v kruge”, Dokl. AN SSSR, 232:2 (1977), 277–279 | MR | Zbl

[9] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. 2, Nauka, M., Nauka

[10] Ramazanov A. K., “O svoistvakh poliratsionalnykh funktsii nailuchshego priblizheniya”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tez. dokl. 8 Saratovskoi zimnei shkoly, Saratov, 1996, 91

[11] Makhmudov Kh. M., “O nailuchshikh ratsionalnykh priblizheniyakh funktsii kompleksnogo peremennogo, summiruemykh po ploschadi”, Matem. zametki, 45:4 (1989), 89–94 | MR

[12] Vyacheslavov N. S., Ramazanov A. K., “Interpolyatsionnye svoistva ratsionalnykh funktsii nailuchshego priblizheniya v srednem kvadraticheskom na okruzhnosti i v kruge”, Matem. zametki, 57:2 (1995), 228–239 | MR | Zbl