A~Bernstein-type inequality for derivatives of rational functions on two segments
Matematičeskie zametki, Tome 66 (1999) no. 4, pp. 508-514.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_66_4_a4,
     author = {A. L. Lukashov},
     title = {A~Bernstein-type inequality for derivatives of rational functions on two segments},
     journal = {Matemati\v{c}eskie zametki},
     pages = {508--514},
     publisher = {mathdoc},
     volume = {66},
     number = {4},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_4_a4/}
}
TY  - JOUR
AU  - A. L. Lukashov
TI  - A~Bernstein-type inequality for derivatives of rational functions on two segments
JO  - Matematičeskie zametki
PY  - 1999
SP  - 508
EP  - 514
VL  - 66
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_66_4_a4/
LA  - ru
ID  - MZM_1999_66_4_a4
ER  - 
%0 Journal Article
%A A. L. Lukashov
%T A~Bernstein-type inequality for derivatives of rational functions on two segments
%J Matematičeskie zametki
%D 1999
%P 508-514
%V 66
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_66_4_a4/
%G ru
%F MZM_1999_66_4_a4
A. L. Lukashov. A~Bernstein-type inequality for derivatives of rational functions on two segments. Matematičeskie zametki, Tome 66 (1999) no. 4, pp. 508-514. http://geodesic.mathdoc.fr/item/MZM_1999_66_4_a4/

[1] Borwein P. B., “Markov's and Bernstein's inequalities on disjoint intervals”, Canad. J. Math., 33:1 (1981), 201–209 | MR | Zbl

[2] Akhiezer N. I., Levin B. Ya., “Obobschenie neravenstva S. N. Bernshteina dlya proizvodnykh ot tselykh funktsii”, Issledovaniya po sovremennym problemam teorii funktsii kompleksnogo peremennogo, ed. A. I. Markushevich, Fizmatgiz, M., 1960, 111–165

[3] Videnskii V. S., “Nekotorye otsenki proizvodnykh ot ratsionalnykh drobei”, Izv. AN SSSR. Ser. matem., 26:3 (1962), 415–426 | MR | Zbl

[4] Borwein P. B., Erdelyi T., Zhang J., “Chebyshev polynomials and Markov–Bernstein type inequalities for rational spaces”, J. London Math. Soc. (2), 50 (1994), 501–519 | MR | Zbl

[5] Rusak V. N., Ratsionalnye funktsii kak apparat priblizheniya, Izd. BGU, Minsk, 1979

[6] Pekarskii A. A., “Otsenki proizvodnoi integrala tipa Koshi s meromorfnoi plotnostyu i ikh prilozheniya”, Matem. zametki, 31:3 (1982), 389–402 | MR | Zbl

[7] Li X., Mohapatra R. N., Rodriguez R. S., “Bernstein-type inequalities for rational functions with prescribed poles”, J. London Math. Soc. (2), 51 (1995), 523–531 | MR | Zbl

[8] Danchenko V. I., “O razdelenii osobennostei meromorfnykh funktsii”, Matem. sb., 125:2 (1984), 181–198 | MR

[9] Lorentz G. G., Golitschek M. V., Makovoz Y., Constructive Approximation. Advanced Problems, Springer, Berlin–Heidelberg, 1996

[10] Rahman Q. I., Schmeisser G., Les inégalités de Markoff et de Bernstein, Presses Univ. Montréal, Montréal, 1983 | Zbl

[11] Lukashov A. L., O zadache Chebysheva–Markova na dvukh otrezkakh, Dep. VINITI, No. 6615-89, VINITI, M., 1989

[12] Achyeser N. I., “Über einige Funktionen, welche in zwei gegebenen Intervallen am wenigsten von Null abweichen, I”, Izv. AN SSSR. Otd. matem. i estestv. nauk, 1932, no. 9, 1163–1202 | Zbl

[13] Levy R., “Generalized rational function in finite intervals using Zolotarev functions”, IEEE Trans. Microwave Theory Tech., 18:12 (1970), 1052–1064 | DOI | MR

[14] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, Transtsendentnye funktsii, Fizmatlit, M., 1963

[15] Peherstorfer F., “Elliptic orthogonal and extremal polynomials”, Proc. London Math. Soc. (3), 70 (1995), 605–624 | DOI | MR | Zbl