Varieties of solvable index-two alternative algebras over a field of characteristic three
Matematičeskie zametki, Tome 66 (1999) no. 4, pp. 556-566
Cet article a éte moissonné depuis la source Math-Net.Ru
The subvarieties of the variety $\mathrm{Alt}_2$ of solvable index-two alternative algebras over an arbitrary field of characteristic 3 are studied. The main types of such varieties are singled out in the language of identities, and inclusions between these types are established. The main results is the following. Theorem. {\it The topological rank of the variety $\mathrm{Alt}_2$ of solvable index-two alternative algebras over an arbitrary field of characteristic $3$ is equal to five}.
@article{MZM_1999_66_4_a10,
author = {S. V. Pchelintsev},
title = {Varieties of solvable index-two alternative algebras over a~field of characteristic three},
journal = {Matemati\v{c}eskie zametki},
pages = {556--566},
year = {1999},
volume = {66},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_4_a10/}
}
S. V. Pchelintsev. Varieties of solvable index-two alternative algebras over a field of characteristic three. Matematičeskie zametki, Tome 66 (1999) no. 4, pp. 556-566. http://geodesic.mathdoc.fr/item/MZM_1999_66_4_a10/
[1] Pchelintsev S. V., “Razreshimye indeksa 2 mnogoobraziya algebr”, Matem. sb., 115 (1981), 179–203 | MR | Zbl
[2] Medvedev Yu. A., “Konechnaya baziruemost mnogoobrazii s dvuchlennym tozhdestvom”, Algebra i logika, 17:6 (1978), 705–726 | MR
[3] Iltyakov A. V., “Reshetka podmnogoobrazii mnogoobraziya dvukhstupenchato razreshimykh alternativnykh algebr”, Algebra i logika, 21:2 (1982), 170–177 | MR
[4] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR | Zbl
[5] Dorofeev G. V., “Primer razreshimogo, no ne nilpotentnogo alternativnogo koltsa”, UMN, 15:3 (1960), 147–150 | MR
[6] Shestakov I. P., “Superalgebry i kontrprimery”, Sib. matem. zh., 32:6 (1991), 187–196 | MR