Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_66_4_a0, author = {Yu. M. Alexencev}, title = {On the measure of approximation of $\pi$ by algebraic numbers}, journal = {Matemati\v{c}eskie zametki}, pages = {483--493}, publisher = {mathdoc}, volume = {66}, number = {4}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_4_a0/} }
Yu. M. Alexencev. On the measure of approximation of $\pi$ by algebraic numbers. Matematičeskie zametki, Tome 66 (1999) no. 4, pp. 483-493. http://geodesic.mathdoc.fr/item/MZM_1999_66_4_a0/
[1] Feldman N. I., “Approksimatsiya nekotorykh transtsendentnykh chisel, I”, Izv. AN SSSR. Ser. matem., 15:1 (1951), 53–74 | MR
[2] Feldman N. I., “O mere transtsendentnosti chisla $\pi $”, Izv. AN SSSR. Ser. matem., 24:3 (1960), 357–368 | MR
[3] Feldman N. I., “Postoyannaya v otsenke mery transtsendentnosti chisla $\pi $”, Diofantovy priblizheniya, Ch. 1, Izd. MGU, M., 1985
[4] Valdshmidt M., Nesterenko Yu. M., “O priblizhenii algebraicheskimi chislami znachenii eksponentsialnoi funktsii i logarifma”, Diofantovy priblizheniya, Sbornik statei, posvyaschennykh pamyati professora N. I. Feldmana, Matem. zapiski, 2, Tsentr prikladnykh issledovanii pri mekh.-mat. fak-te MGU, M., 1996, 23–42
[5] Kunrui Yu, “Linear forms in $p$-adic logarithms”, Acta Arith., 53 (1989), 107–186 ; “II”, Compositio Math., 74 (1990), 15–113 | MR | MR
[6] Feldman N. I., Sedmaya problema Gilberta, Izd. MGU, M., 1982 | Zbl