Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_66_3_a5, author = {V. A. Krasnov}, title = {The {Bloch--Ogus} spectral sequence of a real algebraic variety}, journal = {Matemati\v{c}eskie zametki}, pages = {380--384}, publisher = {mathdoc}, volume = {66}, number = {3}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_3_a5/} }
V. A. Krasnov. The Bloch--Ogus spectral sequence of a real algebraic variety. Matematičeskie zametki, Tome 66 (1999) no. 3, pp. 380-384. http://geodesic.mathdoc.fr/item/MZM_1999_66_3_a5/
[1] Bloch S., Ogus A., “Gersten's conjecture and the homology of schemas”, Ann. Sci. École Norm. Sup., 7 (1974), 181–202 | MR
[2] Colliot-Thélène J.-L., Parimala R., “Real components of algebraic varieties and etale cohomology”, Invent. Math., 101 (1990), 81–99 | DOI | MR | Zbl
[3] Krasnov V. A., “Etalnye i ekvivariantnye kogomologii veschestvennogo algebraicheskogo mnogoobraziya”, Izv. RAN. Ser. matem. (to appear)
[4] Nikulin V. V., “On the Brauer group of real algebraic surfaces”, Algebraic Geometry and Its Applications, Yaroslavl, 1992, 114–136
[5] Grotendik A., O nekotorykh voprosakh gomologicheskoi algebry, IL, M., 1961
[6] Krasnov V. A., “Neravenstva Garnaka–Toma dlya otobrazhenii veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 47:2 (1983), 268–297 | MR
[7] Krasnov V. A., “Kogomologicheskaya gruppa Brauera veschestvennogo algebraicheskogo mnogoobraziya”, Izv. RAN. Ser. matem., 60:5 (1996), 57–88 | MR | Zbl
[8] Krasnov V. A., “Ob ekvivariantnykh kogomologiyakh Grotendika veschestvennogo algebraicheskogo mnogoobraziya i ikh prilozheniyakh”, Izv. RAN. Ser. matem., 58:3 (1994), 36–52 | MR | Zbl