Bounded three-dimensional Fano varieties of integer index
Matematičeskie zametki, Tome 66 (1999) no. 3, pp. 445-451.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_66_3_a13,
     author = {I. A. Cheltsov},
     title = {Bounded three-dimensional {Fano} varieties of integer index},
     journal = {Matemati\v{c}eskie zametki},
     pages = {445--451},
     publisher = {mathdoc},
     volume = {66},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_3_a13/}
}
TY  - JOUR
AU  - I. A. Cheltsov
TI  - Bounded three-dimensional Fano varieties of integer index
JO  - Matematičeskie zametki
PY  - 1999
SP  - 445
EP  - 451
VL  - 66
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_66_3_a13/
LA  - ru
ID  - MZM_1999_66_3_a13
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%T Bounded three-dimensional Fano varieties of integer index
%J Matematičeskie zametki
%D 1999
%P 445-451
%V 66
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_66_3_a13/
%G ru
%F MZM_1999_66_3_a13
I. A. Cheltsov. Bounded three-dimensional Fano varieties of integer index. Matematičeskie zametki, Tome 66 (1999) no. 3, pp. 445-451. http://geodesic.mathdoc.fr/item/MZM_1999_66_3_a13/

[1] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model problem”, Adv. Stud. Pure Math., 10 (1987), 383–360 | MR

[2] Iskovskikh V. A., “Antikanonicheskie modeli trekhmernykh algebraicheskikh mnogoobrazii”, Sovremennye problemy matematiki, 12 (1979), 59–157 | MR | Zbl

[3] Cheltsov I. A., “Trekhmernye mnogoobraziya, obladayuschie divizorom s chislenno trivialnym kanonicheskim klassom”, UMN, 1 (1996), 177–178 | MR | Zbl

[4] Sano T., “On classifications of non-Gorenstein $\mathbb Q$-Fano 3-folds of Fano index 1”, J. Math. Soc. Japan, 47:2 (1995), 369–380 | DOI | MR | Zbl

[5] Namikawa Y., Smoothing Fano 3-folds, Preprint, 1995 | Zbl

[6] Fano G., “Sulle varieta algebriche a tre dimensioni a curve-sezioni canoniche”, Mem. Acc. It., 8 (1937), 813–818

[7] Fano G., “Sulle varrieta algebriche a tre dimensionile le cui sezioni iperpiane sono superfici di genere zero e bigenere uno”, Mem. Soc. It. d. Scienze (detta dei XL), 24 (1938), 44–66

[8] Shin K.-H., “3-dimensional Fano varieties with canonical singularities”, Tokyo J. Math., 12 (1989), 375–385 | MR | Zbl

[9] Kawamata Y., “Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces”, Ann. of Math., 127 (1988), 93–163 | DOI | MR | Zbl

[10] Kawamata Y., On Fujita's freeness conjecture for 3-folds and 4-folds, Preprint, 1996 | Zbl

[11] Saint-Donat B., “Projective models of $K-3$ surfaces”, Amer. J. Math., 96:4 (1974), 602–639 | DOI | MR | Zbl

[12] Kollár J., Miyaoka Y., Mori S., “Rational connectedness and boundedness of Fano manifolds”, J. Differential Geom., 36:3 (1992), 765–779 | MR | Zbl

[13] Kollár J., Miyaoka Y., Mori S., “Rationally connected varieties”, J. Algebraic Geom., 1 (1992), 429–448 | MR | Zbl

[14] Shokurov V. V., “Teorema Netera–Enrikvesa o kanonicheskikh krivykh”, Matem. sb., 86:3 (1971), 367–408 | MR | Zbl

[15] Reid M., Projective morphism according to Kawamata, Preprint, University of Warwick, 1983

[16] Nikulin V. V., “O Kummerovykh poverkhnostyakh”, Izv. AN SSSR. Ser. matem., 39 (1975), 278–293 | MR | Zbl