Tensor invariants of natural mechanical systems on compact surfaces and the corresponding integrals
Matematičeskie zametki, Tome 66 (1999) no. 3, pp. 417-430.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_66_3_a10,
     author = {P. I. Topalov},
     title = {Tensor invariants of natural mechanical systems on compact surfaces and the corresponding integrals},
     journal = {Matemati\v{c}eskie zametki},
     pages = {417--430},
     publisher = {mathdoc},
     volume = {66},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_3_a10/}
}
TY  - JOUR
AU  - P. I. Topalov
TI  - Tensor invariants of natural mechanical systems on compact surfaces and the corresponding integrals
JO  - Matematičeskie zametki
PY  - 1999
SP  - 417
EP  - 430
VL  - 66
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_66_3_a10/
LA  - ru
ID  - MZM_1999_66_3_a10
ER  - 
%0 Journal Article
%A P. I. Topalov
%T Tensor invariants of natural mechanical systems on compact surfaces and the corresponding integrals
%J Matematičeskie zametki
%D 1999
%P 417-430
%V 66
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_66_3_a10/
%G ru
%F MZM_1999_66_3_a10
P. I. Topalov. Tensor invariants of natural mechanical systems on compact surfaces and the corresponding integrals. Matematičeskie zametki, Tome 66 (1999) no. 3, pp. 417-430. http://geodesic.mathdoc.fr/item/MZM_1999_66_3_a10/

[1] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, UdGU, Izhevsk, 1995

[2] Bolotin S. V., Kozlov V. V., “Symmetry fields of geodesic flows”, Russian J. of Math. Phil. (to appear)

[3] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974

[4] Fomenko A. T., Integrability and Nonintegrability in Geometry and Mechanics, Kluwer Acad. Publ., 1988 | Zbl

[5] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 55, Nauka, M., 1989, 137–309 | MR