Some reducibilities and splittings of recursively enumerable sets
Matematičeskie zametki, Tome 66 (1999) no. 2, pp. 220-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_66_2_a9,
     author = {R. Sh. Omanadze},
     title = {Some reducibilities and splittings of recursively enumerable sets},
     journal = {Matemati\v{c}eskie zametki},
     pages = {220--230},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_2_a9/}
}
TY  - JOUR
AU  - R. Sh. Omanadze
TI  - Some reducibilities and splittings of recursively enumerable sets
JO  - Matematičeskie zametki
PY  - 1999
SP  - 220
EP  - 230
VL  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_66_2_a9/
LA  - ru
ID  - MZM_1999_66_2_a9
ER  - 
%0 Journal Article
%A R. Sh. Omanadze
%T Some reducibilities and splittings of recursively enumerable sets
%J Matematičeskie zametki
%D 1999
%P 220-230
%V 66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_66_2_a9/
%G ru
%F MZM_1999_66_2_a9
R. Sh. Omanadze. Some reducibilities and splittings of recursively enumerable sets. Matematičeskie zametki, Tome 66 (1999) no. 2, pp. 220-230. http://geodesic.mathdoc.fr/item/MZM_1999_66_2_a9/

[1] Lerman M., Remmel J. B., “The universal splitting property, I”, Logic Colloqium '80, Stud. Logic Found. Math., 108, eds. D. van Dalen et al., Nort-Holland, Amsterdam, 1982, 181–207 | MR

[2] Lerman M., Remmel J. B., “The universal splitting property, II”, J. Symbolic Logic, 49:1 (1984), 137–150 | DOI | MR | Zbl

[3] Downey R. G., “The degree of r.e. sets without the universal splitting property”, Trans. Amer. Math. Soc., 291 (1985), 337–351 | DOI | MR | Zbl

[4] Ambos-Spies K., Fejer P. A., “Degree theoretical splitting properties of recursively enumerable sets”, J. Symbolic Logic, 53:4 (1988), 110–137 | MR

[5] Downey R. G., Stob M., “Automorphisms of the lattice of recursively enumerable sets: Orbits”, Adv. Math., 92 (1992), 237–265 | DOI | MR | Zbl

[6] Rodzhers Kh., Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972

[7] Soare R. I., Recursively Enumerable Sets and Degrees, Springer, Berlin–New York–Tokyo, 1987

[8] Downey R. G., Jockusch C. G., “$T$-degrees, jump classes and strong reducibilities”, Trans. Amer. Math. Soc., 301:1 (1987), 103–136 | DOI | MR | Zbl

[9] Omanadze R. Sh., “O verkhnei polureshetke rekursivno perechislimykh $sQ$-stepenei”, Algebra i logika, 30:4 (1991), 405–413 | MR | Zbl

[10] Jockusch C. G., “Semirecursive sets and positive reducibility”, Trans. Amer. Math. Soc., 131:2 (1968), 420–436 | DOI | MR | Zbl

[11] Marchenkov S. S., “Ob odnom klasse nepolnykh mnozhestv”, Matem. zametki, 20:4 (1976), 473–478 | MR | Zbl

[12] Omanadze R. Sh., “Sootnosheniya mezhdu nekotorymi svodimostyami”, Algebra i logika, 34:6 (1994), 681–688 | MR

[13] Omanadze R. Sh., “O verkhnei polureshetke rekursivno perechislimykh $Q$-stepenei”, Algebra i logika, 23:2 (1984), 175–184 | MR | Zbl

[14] Omanadze R. Sh., “Ob odnom usilenii $Q$-svodimosti”, Algebra i logika, 35:1 (1995), 79–87 | MR

[15] Shore A. R., “Nowhere simple sets and the lattice of recursively enumerable sets”, J. Symbolic Logic, 43:2 (1978), 322–330 | DOI | MR | Zbl

[16] Omanadze R. Sh., “$Q$-svodimost i nigde ne prostye mnozhestva”, Soobsch. AN GSSR, 127:1 (1987), 29–32 | MR | Zbl

[17] Yates G. E. M., “Three theorems of the degrees of recursively enumerable sets”, Duke Math. J., 32:3 (1965), 461–468 | DOI | MR | Zbl

[18] Ditshev A. V., “Some results on bounded truth-table degrees”, Z. Math. Logik Grundlag. Math., 36:3 (1990), 263–271 | DOI | MR

[19] Blum M., Marques I., “On complexity properties of recursively enumerable sets”, J. Symbolic Logic, 38:4 (1973), 579–593 | DOI | MR

[20] Lachlan A. H., “A note on universal sets”, J. Symbolic Logic, 31:3 (1966), 573–574 | MR | Zbl

[21] Kobzev G. N., “O polnoi $btt$-stepeni”, Algebra i logika, 13:1 (1974), 22–25 | MR | Zbl