Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_66_2_a5, author = {Yu. V. Zaika}, title = {Stable discrete observation programs in analytic dynamical systems}, journal = {Matemati\v{c}eskie zametki}, pages = {194--201}, publisher = {mathdoc}, volume = {66}, number = {2}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_2_a5/} }
Yu. V. Zaika. Stable discrete observation programs in analytic dynamical systems. Matematičeskie zametki, Tome 66 (1999) no. 2, pp. 194-201. http://geodesic.mathdoc.fr/item/MZM_1999_66_2_a5/
[1] Li E. B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972
[2] Zubov V. I., Lektsii po teorii upravleniya, Nauka, M., 1975 | Zbl
[3] Kozerenko K. V., “O chisle zamerov”, Dokl. AN SSSR, 296:5 (1987), 1069–1071 | MR | Zbl
[4] Starkov K. E., “Postroenie programm nablyudenii dlya polinomialnykh sistem”, Avtomatika i telemekhanika, 1993, no. 2, 91–100 | MR | Zbl
[5] Starkov K. E., “Opredelenie mnozhestva programm nablyudenii, garantiruyuschikh nablyudaemost nelineinoi sistemy”, Avtomatika i telemekhanika, 1995, no. 7, 32–42 | MR | Zbl
[6] Erve M., Funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1965
[7] Chirka E. M., Kompleksnye analiticheskie mnozhestva, Nauka, M., 1985