A Sturm--Liouville problem with physical and spectral parameters in boundary conditions
Matematičeskie zametki, Tome 66 (1999) no. 2, pp. 163-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_66_2_a0,
     author = {J. Ben Amara and A. A. Shkalikov},
     title = {A {Sturm--Liouville} problem with physical and spectral parameters in boundary conditions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--172},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_2_a0/}
}
TY  - JOUR
AU  - J. Ben Amara
AU  - A. A. Shkalikov
TI  - A Sturm--Liouville problem with physical and spectral parameters in boundary conditions
JO  - Matematičeskie zametki
PY  - 1999
SP  - 163
EP  - 172
VL  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_66_2_a0/
LA  - ru
ID  - MZM_1999_66_2_a0
ER  - 
%0 Journal Article
%A J. Ben Amara
%A A. A. Shkalikov
%T A Sturm--Liouville problem with physical and spectral parameters in boundary conditions
%J Matematičeskie zametki
%D 1999
%P 163-172
%V 66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_66_2_a0/
%G ru
%F MZM_1999_66_2_a0
J. Ben Amara; A. A. Shkalikov. A Sturm--Liouville problem with physical and spectral parameters in boundary conditions. Matematičeskie zametki, Tome 66 (1999) no. 2, pp. 163-172. http://geodesic.mathdoc.fr/item/MZM_1999_66_2_a0/

[1] Poisson M., Sur la manière d'éxperimer les fonctions par des series de quantités periodiques, et sur l'usage de cette transformation dans la resolution de differents problèmes, 18$^{ \text {eme}}$ cahier, XI, l'Ecole Politechnique de Paris, Paris, 1820

[2] Krylov A. N., O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozhenie v tekhnicheskikh voprosakh, AN SSSR, M., 1932

[3] Timoshenko S. P., Prochnost i kolebaniya elementarnykh konstruktsii, Nauka, M., 1975

[4] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977

[5] Walter J., “Regular eigenvalue problems with eigenvalue parameter in the boundary conditions”, Math. Z., 133 (1973), 301–312 | DOI | MR | Zbl

[6] Fulton C. T., “Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions”, Proc. Roy. Soc. Edinburgh. Sect. A, 77 (1977), 293–308 | MR | Zbl

[7] Golovatyi Yu. D., Nazarov S. A., Oleinik O. A., Soboleva T. S., “O sobstvennykh kolebaniyakh struny s prisoedinennoi massoi”, Sib. matem. zh., 29:5 (1988), 70–81 | MR

[8] Dijksma A., “Eigenfunctions expansions for a class of $Y$-self-adjoined ordinary differential operator with boundary conditions containing the eigenvalue parameter”, Proc. Roy. Soc. Edinburgh. Sect. A, 86 (1980), 1–27 | MR | Zbl

[9] Shkalikov A. A., “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Tr. sem. im. I. G. Petrovskogo, 9, Izd-vo Mosk. un-ta, M., 1983, 140–166

[10] Russakovskii E. M., Zadacha Shturma–Liuvillya s parametrom v granichnykh usloviyakh, Tr. sem. im. I. G. Petrovskogo, 18, Izd-vo Mosk. un-ta, M., 1993

[11] Binding P. A., Browne P. J., Seddighi K., “Sturm–Liouville problems with eigenparameter dependent boundary conditions”, Proc. Edinburgh Math. Soc. (2), 37 (1993), 57–72 | DOI | MR

[12] Vishik M. I., Lyusternik A. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | MR | Zbl

[13] Lancaster P., Shkalikov A. A., Ye Q., “Strongly definizable linear pencil in Hilbert space”, Integral Equations Operator Theory, 17 (1993), 338–360 | DOI | MR | Zbl

[14] Azizov T. Ya., Iokhvidov I. S., Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986

[15] Shkalikov A. A., “Operator pencils arising in elasticity and hydrodynamics. Instability index formula”, Oper. Theory Adv. Appl., 87, Birkhäuser, Basel, 1996, 258–285 | MR

[16] Ben Amara Zh., “Ob asimptotikakh sobstvennykh znachenii i sobstvennykh funktsii zadachi Shturma–Liuvillya s malym i spektralnym parametrami, vkhodyaschimi v granichnye usloviya”, Matem. zametki, 60:4 (1996), 609–611 | MR

[17] Levitan B. M., Sargsyan I. S., Vvedenie v spektralnuyu teoriyu, Nauka, M., 1970 | Zbl

[18] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979

[19] Gurvits A., Kurant R., Teoriya funktsii, Nauka, M., 1968

[20] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[21] Chebotarev N. G., Teoriya algebraicheskikh funktsii, Gostekhizdat, M., 1948