Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_66_1_a11, author = {S. I. Okrut}, title = {Generalized {Hermann} theorems and conformal holomorphic submersions}, journal = {Matemati\v{c}eskie zametki}, pages = {120--134}, publisher = {mathdoc}, volume = {66}, number = {1}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_1_a11/} }
S. I. Okrut. Generalized Hermann theorems and conformal holomorphic submersions. Matematičeskie zametki, Tome 66 (1999) no. 1, pp. 120-134. http://geodesic.mathdoc.fr/item/MZM_1999_66_1_a11/
[1] Hermann R., “A sufficient condition that a mapping of Riemannian manifolds be a fiber bundle”, Proc. Amer. Math. Soc., 11:2 (1960), 236–242 | DOI | MR | Zbl
[2] Okrut S. I., “Skreschennoe proizvedenie v kelerovoi geometrii”, Matem. fizika, analiz, geometriya, 4:1/2 (1997) | MR | Zbl
[3] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, V 2-kh t., Nauka, M., 1981
[4] Besse A., Mnogoobraziya Einshteina, V 2-kh t., Mir, M., 1990 | Zbl
[5] Molino P., Riemannian Foliations, Birkhäuser, Boston, 1988 | Zbl
[6] Tonder Ph., Foliations on Riemannian manifolds, Springer-Verlag, N. Y., 1988
[7] Gray A., “Pseudo-Riemannian almost product manifolds and submersions”, J. Math. Mech., 16:7 (1967), 715–737 | MR | Zbl
[8] Nomizu K., Ozeki H., “The existence of complete Riemannian metrics”, Proc. Amer. Math. Soc., 12:6 (1961), 889–891 | DOI | MR | Zbl
[9] Chzhen Shen-shen, Kompleksnye mnogoobraziya, IL, M., 1961
[10] Khirtsebrukh F., Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973