Generalized Hermann theorems and conformal holomorphic submersions
Matematičeskie zametki, Tome 66 (1999) no. 1, pp. 120-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_66_1_a11,
     author = {S. I. Okrut},
     title = {Generalized {Hermann} theorems and conformal holomorphic submersions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {120--134},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_1_a11/}
}
TY  - JOUR
AU  - S. I. Okrut
TI  - Generalized Hermann theorems and conformal holomorphic submersions
JO  - Matematičeskie zametki
PY  - 1999
SP  - 120
EP  - 134
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_66_1_a11/
LA  - ru
ID  - MZM_1999_66_1_a11
ER  - 
%0 Journal Article
%A S. I. Okrut
%T Generalized Hermann theorems and conformal holomorphic submersions
%J Matematičeskie zametki
%D 1999
%P 120-134
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_66_1_a11/
%G ru
%F MZM_1999_66_1_a11
S. I. Okrut. Generalized Hermann theorems and conformal holomorphic submersions. Matematičeskie zametki, Tome 66 (1999) no. 1, pp. 120-134. http://geodesic.mathdoc.fr/item/MZM_1999_66_1_a11/

[1] Hermann R., “A sufficient condition that a mapping of Riemannian manifolds be a fiber bundle”, Proc. Amer. Math. Soc., 11:2 (1960), 236–242 | DOI | MR | Zbl

[2] Okrut S. I., “Skreschennoe proizvedenie v kelerovoi geometrii”, Matem. fizika, analiz, geometriya, 4:1/2 (1997) | MR | Zbl

[3] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, V 2-kh t., Nauka, M., 1981

[4] Besse A., Mnogoobraziya Einshteina, V 2-kh t., Mir, M., 1990 | Zbl

[5] Molino P., Riemannian Foliations, Birkhäuser, Boston, 1988 | Zbl

[6] Tonder Ph., Foliations on Riemannian manifolds, Springer-Verlag, N. Y., 1988

[7] Gray A., “Pseudo-Riemannian almost product manifolds and submersions”, J. Math. Mech., 16:7 (1967), 715–737 | MR | Zbl

[8] Nomizu K., Ozeki H., “The existence of complete Riemannian metrics”, Proc. Amer. Math. Soc., 12:6 (1961), 889–891 | DOI | MR | Zbl

[9] Chzhen Shen-shen, Kompleksnye mnogoobraziya, IL, M., 1961

[10] Khirtsebrukh F., Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973