Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_65_6_a3, author = {O. K. Ivanova}, title = {Majorant estimates for partial sums of multiple {Fourier} series from {Orlicz} spaces that vanish on some set}, journal = {Matemati\v{c}eskie zametki}, pages = {821--830}, publisher = {mathdoc}, volume = {65}, number = {6}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_6_a3/} }
TY - JOUR AU - O. K. Ivanova TI - Majorant estimates for partial sums of multiple Fourier series from Orlicz spaces that vanish on some set JO - Matematičeskie zametki PY - 1999 SP - 821 EP - 830 VL - 65 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1999_65_6_a3/ LA - ru ID - MZM_1999_65_6_a3 ER -
O. K. Ivanova. Majorant estimates for partial sums of multiple Fourier series from Orlicz spaces that vanish on some set. Matematičeskie zametki, Tome 65 (1999) no. 6, pp. 821-830. http://geodesic.mathdoc.fr/item/MZM_1999_65_6_a3/
[1] Bloshanskii I. L., “Ravnoskhodimost razlozhenii v kratnyi trigonometricheskii ryad Fure i integral Fure”, Matem. zametki, 18:2 (1975), 153–168 | MR
[2] Bloshanskii I. L., “Obobschennaya lokalizatsiya pochti vsyudu i skhodimost dvoinykh ryadov Fure”, Dokl. AN SSSR, 242:1 (1978), 11–13 | MR
[3] Bloshanskaya S. K., Bloshanskii I. L., Roslova T. Yu., “Obobschennaya lokalizatsiya v klassakh Orlicha”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tezisy dokl. 9-i Saratovskoi zimnei shkoly (1989), Saratov, 1997, 26
[4] Bloshanskii I. L., “Generalized localization and convergence tests for double trigonometric Fourier series of functions from $L_p$, $p>1$”, Anal. Math., 7:1 (1981), 3–36 | DOI | MR
[5] Bloshanskii I. L., Avtoreferat diss. ... d.f.-m.n., MIAN, M., 1991
[6] Bloshanskii I. L., “Struktura i geometriya maksimalnykh mnozhestv skhodimosti i neogranichennoi raskhodimosti pochti vsyudu kratnykh ryadov Fure funktsii iz $L_1$, ravnykh nulyu na zadannom mnozhestve”, Izv. AN SSSR. Ser. matem., 53:4 (1989), 675–707 | MR
[7] Bloshanskii I. L., “Dva kriteriya slaboi obobschennoi lokalizatsii dlya kratnykh trigonometricheskikh ryadov Fure funktsii iz $L_p$, $p\geqslant 1$”, Izv. AN SSSR. Ser. matem., 49:2 (1985), 243–282 | MR
[8] Bloshanskii I. L., Ivanova O. K., Roslova T. Yu., “Obobschennaya lokalizatsiya i ravnoskhodimost razlozhenii v dvoinoi trigonometricheskii ryad i integral Fure funktsii iz $L(\ln ^+L)^2$”, Matem. zametki, 60:3 (1996), 437–441 | MR
[9] Roslova T. Yu., “O spravedlivosti obobschennoi lokalizatsii dlya dvoinykh trigonometricheskikh ryadov Fure funktsii iz $L\log^+L\log^+\log^+L$”, Dokl. RAN, 359:6 (1998), 744–745 | MR | Zbl
[10] Bloshanskaya S. K., Bloshanskii I. L., Roslova T. Yu., “Obobschennaya lokalizatsiya dlya dvoinykh trigonometricheskikh ryadov Fure i ryadov Fure–Uolsha funktsii iz $L\log^+L\log^+\log^+L$”, Matem. sb., 189:5 (1998), 21–46 | MR | Zbl
[11] Yano S., “Notes on Fourier analysis (XXIX): An extrapolation theorem”, J. Math. Soc. Japan, 3 (1951), 296–305 | MR | Zbl
[12] Zigmund A., Trigonometricheskie ryady, T. 2, Mir, M., 1965 | MR
[13] Soria F., “Note on differentiation of integrals and the halo conjecture”, Studia. Math., 81 (1985), 29–36 | MR | Zbl
[14] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR
[15] Sjolin P., “Convergence almost everywhere of certain singular integrals and multiple Fourier series”, Ark. Mat., 9:1 (1971), 65–90 | DOI | MR