Majorant estimates for partial sums of multiple Fourier series from Orlicz spaces that vanish on some set
Matematičeskie zametki, Tome 65 (1999) no. 6, pp. 821-830.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_65_6_a3,
     author = {O. K. Ivanova},
     title = {Majorant estimates for partial sums of multiple {Fourier} series from {Orlicz} spaces that vanish on some set},
     journal = {Matemati\v{c}eskie zametki},
     pages = {821--830},
     publisher = {mathdoc},
     volume = {65},
     number = {6},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_6_a3/}
}
TY  - JOUR
AU  - O. K. Ivanova
TI  - Majorant estimates for partial sums of multiple Fourier series from Orlicz spaces that vanish on some set
JO  - Matematičeskie zametki
PY  - 1999
SP  - 821
EP  - 830
VL  - 65
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_65_6_a3/
LA  - ru
ID  - MZM_1999_65_6_a3
ER  - 
%0 Journal Article
%A O. K. Ivanova
%T Majorant estimates for partial sums of multiple Fourier series from Orlicz spaces that vanish on some set
%J Matematičeskie zametki
%D 1999
%P 821-830
%V 65
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_65_6_a3/
%G ru
%F MZM_1999_65_6_a3
O. K. Ivanova. Majorant estimates for partial sums of multiple Fourier series from Orlicz spaces that vanish on some set. Matematičeskie zametki, Tome 65 (1999) no. 6, pp. 821-830. http://geodesic.mathdoc.fr/item/MZM_1999_65_6_a3/

[1] Bloshanskii I. L., “Ravnoskhodimost razlozhenii v kratnyi trigonometricheskii ryad Fure i integral Fure”, Matem. zametki, 18:2 (1975), 153–168 | MR

[2] Bloshanskii I. L., “Obobschennaya lokalizatsiya pochti vsyudu i skhodimost dvoinykh ryadov Fure”, Dokl. AN SSSR, 242:1 (1978), 11–13 | MR

[3] Bloshanskaya S. K., Bloshanskii I. L., Roslova T. Yu., “Obobschennaya lokalizatsiya v klassakh Orlicha”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tezisy dokl. 9-i Saratovskoi zimnei shkoly (1989), Saratov, 1997, 26

[4] Bloshanskii I. L., “Generalized localization and convergence tests for double trigonometric Fourier series of functions from $L_p$, $p>1$”, Anal. Math., 7:1 (1981), 3–36 | DOI | MR

[5] Bloshanskii I. L., Avtoreferat diss. ... d.f.-m.n., MIAN, M., 1991

[6] Bloshanskii I. L., “Struktura i geometriya maksimalnykh mnozhestv skhodimosti i neogranichennoi raskhodimosti pochti vsyudu kratnykh ryadov Fure funktsii iz $L_1$, ravnykh nulyu na zadannom mnozhestve”, Izv. AN SSSR. Ser. matem., 53:4 (1989), 675–707 | MR

[7] Bloshanskii I. L., “Dva kriteriya slaboi obobschennoi lokalizatsii dlya kratnykh trigonometricheskikh ryadov Fure funktsii iz $L_p$, $p\geqslant 1$”, Izv. AN SSSR. Ser. matem., 49:2 (1985), 243–282 | MR

[8] Bloshanskii I. L., Ivanova O. K., Roslova T. Yu., “Obobschennaya lokalizatsiya i ravnoskhodimost razlozhenii v dvoinoi trigonometricheskii ryad i integral Fure funktsii iz $L(\ln ^+L)^2$”, Matem. zametki, 60:3 (1996), 437–441 | MR

[9] Roslova T. Yu., “O spravedlivosti obobschennoi lokalizatsii dlya dvoinykh trigonometricheskikh ryadov Fure funktsii iz $L\log^+L\log^+\log^+L$”, Dokl. RAN, 359:6 (1998), 744–745 | MR | Zbl

[10] Bloshanskaya S. K., Bloshanskii I. L., Roslova T. Yu., “Obobschennaya lokalizatsiya dlya dvoinykh trigonometricheskikh ryadov Fure i ryadov Fure–Uolsha funktsii iz $L\log^+L\log^+\log^+L$”, Matem. sb., 189:5 (1998), 21–46 | MR | Zbl

[11] Yano S., “Notes on Fourier analysis (XXIX): An extrapolation theorem”, J. Math. Soc. Japan, 3 (1951), 296–305 | MR | Zbl

[12] Zigmund A., Trigonometricheskie ryady, T. 2, Mir, M., 1965 | MR

[13] Soria F., “Note on differentiation of integrals and the halo conjecture”, Studia. Math., 81 (1985), 29–36 | MR | Zbl

[14] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[15] Sjolin P., “Convergence almost everywhere of certain singular integrals and multiple Fourier series”, Ark. Mat., 9:1 (1971), 65–90 | DOI | MR