The depth invariant for group actions on countable phase spaces
Matematičeskie zametki, Tome 65 (1999) no. 6, pp. 893-907.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_65_6_a10,
     author = {S. A. Shapovalov},
     title = {The depth invariant for group actions on countable phase spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {893--907},
     publisher = {mathdoc},
     volume = {65},
     number = {6},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_6_a10/}
}
TY  - JOUR
AU  - S. A. Shapovalov
TI  - The depth invariant for group actions on countable phase spaces
JO  - Matematičeskie zametki
PY  - 1999
SP  - 893
EP  - 907
VL  - 65
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_65_6_a10/
LA  - ru
ID  - MZM_1999_65_6_a10
ER  - 
%0 Journal Article
%A S. A. Shapovalov
%T The depth invariant for group actions on countable phase spaces
%J Matematičeskie zametki
%D 1999
%P 893-907
%V 65
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_65_6_a10/
%G ru
%F MZM_1999_65_6_a10
S. A. Shapovalov. The depth invariant for group actions on countable phase spaces. Matematičeskie zametki, Tome 65 (1999) no. 6, pp. 893-907. http://geodesic.mathdoc.fr/item/MZM_1999_65_6_a10/

[1] Shapovalov S. A., “Sopryazhennost simvolicheskikh dinamicheskikh sistem ne bolee chem so schetnym fazovym prostranstvom”, Vestn. MGU. Ser. 1. Matem., mekh., 1997, no. 3, 35–39 | MR | Zbl

[2] Birkhoff G. D., “Über gewisse Zentralbewegungen Dynamischer Systeme”, Ges. Wiss. Göttingen Nachr. Math.-Phys. Kl., 1926, 81–92

[3] Maier A. G., “O poryadkovom chisle tsentralnykh traektorii”, Dokl. AN SSSR, 59:8 (1948), 1393–1396 | MR | Zbl

[4] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, 2-e izd., GITTL, M.–L., 1949

[5] Neumann D. A., “Central sequences in dynamical systems”, Amer. J. Math., 100:1 (1978), 1–18 | DOI | MR | Zbl

[6] Anosov D. V., “Remarks concerning hyperbolic sets”, J. Math. Sci., 78:5 (1996), 497–529 | DOI | MR | Zbl