Wreath products of von Neumann algebras
Matematičeskie zametki, Tome 65 (1999) no. 5, pp. 760-774.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_65_5_a12,
     author = {C. Cecchini},
     title = {Wreath products of von {Neumann} algebras},
     journal = {Matemati\v{c}eskie zametki},
     pages = {760--774},
     publisher = {mathdoc},
     volume = {65},
     number = {5},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_5_a12/}
}
TY  - JOUR
AU  - C. Cecchini
TI  - Wreath products of von Neumann algebras
JO  - Matematičeskie zametki
PY  - 1999
SP  - 760
EP  - 774
VL  - 65
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_65_5_a12/
LA  - ru
ID  - MZM_1999_65_5_a12
ER  - 
%0 Journal Article
%A C. Cecchini
%T Wreath products of von Neumann algebras
%J Matematičeskie zametki
%D 1999
%P 760-774
%V 65
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_65_5_a12/
%G ru
%F MZM_1999_65_5_a12
C. Cecchini. Wreath products of von Neumann algebras. Matematičeskie zametki, Tome 65 (1999) no. 5, pp. 760-774. http://geodesic.mathdoc.fr/item/MZM_1999_65_5_a12/

[1] Accardi L., Cecchini C., “Conditional expectations in von Neumann algebras and a theorem of Takesaki”, J. Funct. Anal., 45 (1982), 245–273 | DOI | MR | Zbl

[2] Petz D., “Conditional Expectations in Quantum Probability”, Quantum Probability and Applications, III, Lecture Notes in Math., 1303, Springer-Verlag, N.-Y., 1988, 251–260 | MR

[3] Takesaki M., “Conditional expectations in von Neumann algebras”, J. Funct. Anal., 9 (1972), 306–321 | DOI | MR | Zbl

[4] Cecchini C., Petz D., “State extensions and a Radon–Nikodym theorem for conditional expectations in von Neumann algebras”, Pacific J. Math., 138 (1989), 9–23 | MR

[5] Cecchini C., Petz D., “Classes of conditional expectations over von Neumann algebras”, J. Funct. Anal., 92 (1990), 8–29 | DOI | MR | Zbl

[6] Cecchini C., “Stochastic couplings for von Neumann algebras”, Quantum Probability and Applications, IV, Lecture Notes in Math., 1396, Springer-Verlag, N.-Y., 1989, 128–142 | MR

[7] Cecchini C., “Stochastic transitions on von Neumann algebras”, Boll. U.M.I., 9-A (1995), 439–452 | MR | Zbl

[8] Cecchini C., Kuemmerer B., “Stochastic transitions on preduals of von Neumann algebras”, Quantum Probability and Applications, V, Lecture Notes in Math., 1442, Springer-Verlag, N.-Y., 1990, 126–130 | MR

[9] Kuemmerer B., “Survey on a Theory of Noncommutative Stationary Markov Processes”, Quantum Probability and Applications, III, Lecture Notes in Math., 1303, Springer-Verlag, N.-Y., 1988, 154–182

[10] Connes A., “Sur le theoreme de Radon–Nikodym pour les poids normaux fideles semifinis”, Bull. Soc. Math. Fr. Sec. III, 97 (1973), 253–258 | MR

[11] Araki H., “Some properties of modular conjugation operator of von Neumann algebras and a noncommutative Radon–Nikodym theorem with a chain rule”, Pacific J. Math., 50 (1974), 309–354 | MR | Zbl

[12] Haagerup U., “Operator valued weights in von Neumann algebras, I”, J. Funct. Anal., 32 (1979), 175–206 | DOI | MR | Zbl

[13] Haagerup U., “Operator valued weights in von Neumann algebras, II”, J. Funct. Anal., 33 (1979), 361–399 | DOI | MR

[14] Connes A., “On the spatial theory of von Neumann algebras”, J. Funct. Anal., 35 (1980), 153–164 | DOI | MR | Zbl