The majorization principle for $p$-valent functions
Matematičeskie zametki, Tome 65 (1999) no. 4, pp. 533-541.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_65_4_a4,
     author = {V. N. Dubinin},
     title = {The majorization principle for $p$-valent functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {533--541},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_4_a4/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - The majorization principle for $p$-valent functions
JO  - Matematičeskie zametki
PY  - 1999
SP  - 533
EP  - 541
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_65_4_a4/
LA  - ru
ID  - MZM_1999_65_4_a4
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T The majorization principle for $p$-valent functions
%J Matematičeskie zametki
%D 1999
%P 533-541
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_65_4_a4/
%G ru
%F MZM_1999_65_4_a4
V. N. Dubinin. The majorization principle for $p$-valent functions. Matematičeskie zametki, Tome 65 (1999) no. 4, pp. 533-541. http://geodesic.mathdoc.fr/item/MZM_1999_65_4_a4/

[1] Stoilov S., Teoriya funktsii kompleksnogo peremennogo, T. 2, IL, M., 1962

[2] Mityuk I. P., “Printsip simmetrizatsii dlya mnogosvyaznykh oblastei”, Dokl. AN SSSR, 157:2 (1964), 268–270 | MR | Zbl

[3] Mityuk I. P., Simmetrizatsionnye metody i ikh primenenie v geometricheskoi teorii funktsii. Vvedenie v simmetrizatsionnye metody, Kubanskii gos. un-t, Krasnodar, 1980

[4] Shiffer M., “Nekotorye novye rezultaty v teorii konformnykh otobrazhenii”, Prilozhenie k knige R. Kuranta “Printsip Dirikhle, konformnye otobrazheniya i minimalnye poverkhnosti”, IL, M., 1953

[5] Nehari Z., “Some inequalities in the theory of functions”, Trans. Amer. Math. Soc., 75:2 (1953), 256–286 | DOI | MR | Zbl

[6] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966

[7] Dubinin V. N., “Nekotorye svoistva vnutrennego privedennogo modulya”, Sib. matem. zh., 35:4 (1994), 774–792 | MR | Zbl

[8] Dubinin V. N., “Simmetrizatsiya, funktsiya Grina i konformnye otobrazheniya”, Analiticheskaya teoriya chisel i teoriya funktsii, Zapiski nauch. sem. POMI, 226, no. 13, POMI, SPb., 1996, 80–92

[9] Dubinin V. N., “Asimptotika modulya vyrozhdayuschegosya kondensatora i nekotorye ee primeneniya”, Analiticheskaya teoriya chisel i teoriya funktsii. 14, Zapiski nauch. sem. POMI, 237, POMI, SPb., 1997, 56–73 | Zbl