Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_65_4_a4, author = {V. N. Dubinin}, title = {The majorization principle for $p$-valent functions}, journal = {Matemati\v{c}eskie zametki}, pages = {533--541}, publisher = {mathdoc}, volume = {65}, number = {4}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_4_a4/} }
V. N. Dubinin. The majorization principle for $p$-valent functions. Matematičeskie zametki, Tome 65 (1999) no. 4, pp. 533-541. http://geodesic.mathdoc.fr/item/MZM_1999_65_4_a4/
[1] Stoilov S., Teoriya funktsii kompleksnogo peremennogo, T. 2, IL, M., 1962
[2] Mityuk I. P., “Printsip simmetrizatsii dlya mnogosvyaznykh oblastei”, Dokl. AN SSSR, 157:2 (1964), 268–270 | MR | Zbl
[3] Mityuk I. P., Simmetrizatsionnye metody i ikh primenenie v geometricheskoi teorii funktsii. Vvedenie v simmetrizatsionnye metody, Kubanskii gos. un-t, Krasnodar, 1980
[4] Shiffer M., “Nekotorye novye rezultaty v teorii konformnykh otobrazhenii”, Prilozhenie k knige R. Kuranta “Printsip Dirikhle, konformnye otobrazheniya i minimalnye poverkhnosti”, IL, M., 1953
[5] Nehari Z., “Some inequalities in the theory of functions”, Trans. Amer. Math. Soc., 75:2 (1953), 256–286 | DOI | MR | Zbl
[6] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966
[7] Dubinin V. N., “Nekotorye svoistva vnutrennego privedennogo modulya”, Sib. matem. zh., 35:4 (1994), 774–792 | MR | Zbl
[8] Dubinin V. N., “Simmetrizatsiya, funktsiya Grina i konformnye otobrazheniya”, Analiticheskaya teoriya chisel i teoriya funktsii, Zapiski nauch. sem. POMI, 226, no. 13, POMI, SPb., 1996, 80–92
[9] Dubinin V. N., “Asimptotika modulya vyrozhdayuschegosya kondensatora i nekotorye ee primeneniya”, Analiticheskaya teoriya chisel i teoriya funktsii. 14, Zapiski nauch. sem. POMI, 237, POMI, SPb., 1997, 56–73 | Zbl