The Clarkson--Erd\"os theorem for several variables
Matematičeskie zametki, Tome 65 (1999) no. 4, pp. 594-598.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_65_4_a10,
     author = {S. G. Merzlyakov},
     title = {The {Clarkson--Erd\"os} theorem for several variables},
     journal = {Matemati\v{c}eskie zametki},
     pages = {594--598},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_4_a10/}
}
TY  - JOUR
AU  - S. G. Merzlyakov
TI  - The Clarkson--Erd\"os theorem for several variables
JO  - Matematičeskie zametki
PY  - 1999
SP  - 594
EP  - 598
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_65_4_a10/
LA  - ru
ID  - MZM_1999_65_4_a10
ER  - 
%0 Journal Article
%A S. G. Merzlyakov
%T The Clarkson--Erd\"os theorem for several variables
%J Matematičeskie zametki
%D 1999
%P 594-598
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_65_4_a10/
%G ru
%F MZM_1999_65_4_a10
S. G. Merzlyakov. The Clarkson--Erd\"os theorem for several variables. Matematičeskie zametki, Tome 65 (1999) no. 4, pp. 594-598. http://geodesic.mathdoc.fr/item/MZM_1999_65_4_a10/

[1] Clarkson J., Erdös P., “Approximation by polynomials”, Duke Math. Pures Appl., 14 (1935), 403–453

[2] Schwartz L., Étude des sommes d'exponentielles rèeles, Hermann, Paris, 1943 | Zbl

[3] Bernshtein S. N., Ekstremalnye svoistva mnogochlenov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi peremennoi, AN SSSR, L.–M., 1937

[4] Merzlyakov S. G., “Teorema tipa Runge dlya invariantnykh prostranstv analiticheskikh otobrazhenii”, Izv. RAN. Ser. matem., 59:2 (1995), 163–178 | MR | Zbl