Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_65_3_a10, author = {N. A. Tyurin}, title = {Abelian monopoles and complex geometry}, journal = {Matemati\v{c}eskie zametki}, pages = {420--428}, publisher = {mathdoc}, volume = {65}, number = {3}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_3_a10/} }
N. A. Tyurin. Abelian monopoles and complex geometry. Matematičeskie zametki, Tome 65 (1999) no. 3, pp. 420-428. http://geodesic.mathdoc.fr/item/MZM_1999_65_3_a10/
[1] Witten E., “Monopoles and four-manifolds”, Math. Res. Lett., 1 (1994), 769–789 | MR
[2] Taubes C., “The Seiberg–Witten invariants and symplectic forms”, Math. Res. Lett., 1 (1994), 809–822 | MR | Zbl
[3] Kotschick D., Morgan J., Taubes C., “Four-manifolds without symplectic structures but with nontrivial Seiberg–Witten invariants”, Math. Res. Lett., 2 (1995), 119–124 | MR | Zbl
[4] Hodge W. V. D., The Theory and Application of Harmonic Integrals, Cambridge, Cambridge Univ. Press, 1989
[5] Kronheimer P., Mrowka T., “The genus of embedded surfaces in the projective plane”, Math. Res. Lett., 1 (1994), 797–808 | MR | Zbl
[6] Donaldson S., “The Seiberg–Witten equations and $4$-manifold topology”, Bull. Amer. Math. Soc., 33:1 (1996), 45–70 | DOI | MR | Zbl
[7] Tyurin N. A., “Neobkhodimoe i dostatochnoe usloviya deformatsii $B$-monopolya v instanton”, Izv. AN SSSR. Ser. matem., 60:1 (1996), 211–224 | MR | Zbl
[8] Donaldson S., Kronheimer P., The Geometry of Four-Manifolds, Clarendon Press, Oxford, 1990 | Zbl