Exact classification of divergence-free nondivergent vector fields on surfaces of small genus
Matematičeskie zametki, Tome 65 (1999) no. 3, pp. 336-353.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_65_3_a1,
     author = {B. S. Kruglikov},
     title = {Exact classification of divergence-free nondivergent vector fields on surfaces of small genus},
     journal = {Matemati\v{c}eskie zametki},
     pages = {336--353},
     publisher = {mathdoc},
     volume = {65},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_3_a1/}
}
TY  - JOUR
AU  - B. S. Kruglikov
TI  - Exact classification of divergence-free nondivergent vector fields on surfaces of small genus
JO  - Matematičeskie zametki
PY  - 1999
SP  - 336
EP  - 353
VL  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_65_3_a1/
LA  - ru
ID  - MZM_1999_65_3_a1
ER  - 
%0 Journal Article
%A B. S. Kruglikov
%T Exact classification of divergence-free nondivergent vector fields on surfaces of small genus
%J Matematičeskie zametki
%D 1999
%P 336-353
%V 65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_65_3_a1/
%G ru
%F MZM_1999_65_3_a1
B. S. Kruglikov. Exact classification of divergence-free nondivergent vector fields on surfaces of small genus. Matematičeskie zametki, Tome 65 (1999) no. 3, pp. 336-353. http://geodesic.mathdoc.fr/item/MZM_1999_65_3_a1/

[1] Arnold V. I., “Topologicheskie i ergodicheskie svoistva zamknutykh $1$-form s ratsionalno nezavisimymi periodami”, Funktsion. analiz i ego prilozh., 25:2 (1991), 1–12 | MR | Zbl

[2] Novikov S. P., “Kriticheskie tochki i poverkhnosti urovnya mnogoznachnykh funktsii”, Tr. MIAN, 166, Nauka, M., 1984, 201–209 | MR | Zbl

[3] Kruglikov B. S., “Tochnaya gladkaya klassifikatsiya gamiltonovykh vektornykh polei na dvumernykh mnogoobraziyakh”, Matem. zametki, 61:2 (1997), 179–200 | MR | Zbl

[4] Bolsinov A. V., “Gladkaya traektornaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Matem. sb., 186:1 (1995), 3–28 | MR | Zbl

[5] Bolsinov A. V., Fomenko A. T., “Traektornaya ekvivalentnost integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Teorema klassifikatsii. I; II”, Matem. sb., 185:4 (1994), 27–80 | Zbl

[6] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 59–77 | MR | Zbl

[7] Dufour J.-P., Molino P., Toulet A., “Classification des systèmes intégrables en dimension $2$ et invariants des modèles de Fomenko”, C. R. Acad. Sci. Paris. Sér. I. Math., 318:10 (1994), 949–952 | MR | Zbl

[8] Colin de Verdiere Y., Vey J., “Le lemme de Morse isochore”, Topology, 18 (1979), 283–293 | DOI | MR | Zbl

[9] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978

[10] Mozer Yu., “Bystro skhodyaschiisya metod iteratsii i nelineinye differentsialnye uravneniya”, UMN, 23:4 (1968), 179–238 | MR

[11] Palis Zh., di Melu V., Geometricheskaya teoriya dinamicheskikh sistem. Vvedenie, Mir, M., 1986