Stability and bifurcation under periodic perturbations of the equilibrium position of an oscillator with an infinitely large or infinitely small oscillation frequency
Matematičeskie zametki, Tome 65 (1999) no. 3, pp. 323-335.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_65_3_a0,
     author = {Yu. N. Bibikov},
     title = {Stability and bifurcation under periodic perturbations of the equilibrium position of an oscillator with an infinitely large or infinitely small oscillation frequency},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--335},
     publisher = {mathdoc},
     volume = {65},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_3_a0/}
}
TY  - JOUR
AU  - Yu. N. Bibikov
TI  - Stability and bifurcation under periodic perturbations of the equilibrium position of an oscillator with an infinitely large or infinitely small oscillation frequency
JO  - Matematičeskie zametki
PY  - 1999
SP  - 323
EP  - 335
VL  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_65_3_a0/
LA  - ru
ID  - MZM_1999_65_3_a0
ER  - 
%0 Journal Article
%A Yu. N. Bibikov
%T Stability and bifurcation under periodic perturbations of the equilibrium position of an oscillator with an infinitely large or infinitely small oscillation frequency
%J Matematičeskie zametki
%D 1999
%P 323-335
%V 65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_65_3_a0/
%G ru
%F MZM_1999_65_3_a0
Yu. N. Bibikov. Stability and bifurcation under periodic perturbations of the equilibrium position of an oscillator with an infinitely large or infinitely small oscillation frequency. Matematičeskie zametki, Tome 65 (1999) no. 3, pp. 323-335. http://geodesic.mathdoc.fr/item/MZM_1999_65_3_a0/

[1] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, GITTL, M.–L., 1947

[2] Lyapunov A. M., Sobranie sochinenii, T. 2, Izd-vo AN SSSR, M.–L., 1956

[3] Neimark Yu. I., “O nekotorykh sluchayakh zavisimosti periodicheskikh reshenii ot parametra”, Dokl. AN SSSR, 129:4 (1959), 376–379 | MR

[4] Hale J. K., “Integral manifolds of perturbed differential systems”, Ann. of Math., 73 (1961), 496–531 | DOI | MR | Zbl

[5] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundament. napravleniya, 5, 1986, 5–218 | Zbl