Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_65_2_a6, author = {L. D. Menikhes}, title = {On the regularizability of some classes of mappings that are inverse to integral operators}, journal = {Matemati\v{c}eskie zametki}, pages = {222--229}, publisher = {mathdoc}, volume = {65}, number = {2}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a6/} }
L. D. Menikhes. On the regularizability of some classes of mappings that are inverse to integral operators. Matematičeskie zametki, Tome 65 (1999) no. 2, pp. 222-229. http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a6/
[1] Tanana V. P., “O reshenii integralnykh uravnenii Fredgolma pervogo roda v prostranstve $C(0,1)$”, Matem. zapiski, Tetrad 4, 7, UrGU, Sverdlovsk, 1970, 83–90 | MR
[2] Menikhes L. D., “O regulyarizuemosti otobrazhenii, obratnykh k integralnym operatoram”, Dokl. AN SSSR, 241:2 (1978), 282–285 | MR | Zbl
[3] Plichko A. N., “Nenormiruyuschie podprostranstva i integralnye operatory s neregulyarizuemym obratnym”, Sib. matem. zh., 29:4 (1988), 208–211 | MR
[4] Ostrovskii M. I., “Zamechanie ob analiticheskoi predstavimosti otobrazhenii, obratnykh k integralnym operatoram”, Matem. fizika, analiz, geometriya, 1:3–4 (1994), 513–515 | MR
[5] Vinokurov V. A., Petunin Yu. I., Plichko A. N., “Usloviya izmerimosti i regulyarizuemosti otobrazhenii, obratnykh k nepreryvnym lineinym otobrazheniyam”, Dokl. AN SSSR, 220:3 (1975), 509–511 | MR | Zbl
[6] Petunin Yu. I., Plichko A. N., “Regulyarizuemost po Tikhonovu nekotorykh klassov nekorrektnykh zadach”, Matem. sbornik, Naukova dumka, Kiev, 1976, 221–224 | MR