Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_65_2_a5, author = {A. G. Losev}, title = {On the behavior of bounded solutions of the equation $\Delta u-c(x)u=0$ on {a~Riemannian} manifold of a special type}, journal = {Matemati\v{c}eskie zametki}, pages = {215--221}, publisher = {mathdoc}, volume = {65}, number = {2}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a5/} }
TY - JOUR AU - A. G. Losev TI - On the behavior of bounded solutions of the equation $\Delta u-c(x)u=0$ on a~Riemannian manifold of a special type JO - Matematičeskie zametki PY - 1999 SP - 215 EP - 221 VL - 65 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a5/ LA - ru ID - MZM_1999_65_2_a5 ER -
A. G. Losev. On the behavior of bounded solutions of the equation $\Delta u-c(x)u=0$ on a~Riemannian manifold of a special type. Matematičeskie zametki, Tome 65 (1999) no. 2, pp. 215-221. http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a5/
[1] Grigoryan A. A., Nadirashvili N. S., “Liuvillevy teoremy i vneshnie kraevye zadachi”, Izv. vuzov. Matem., 1987, no. 5, 25–33 | MR
[2] Losev A. G., “Nekotorye liuvillevy teoremy na rimanovykh mnogoobraziyakh spetsialnogo vida”, Izv. vuzov. Matem., 1991, no. 12, 15–24 | MR | Zbl
[3] Sario L., Nakai M., Wang C., Chung L. O., Classification Theory of Riemannian Manifolds, Lecture Notes in Math., 605, Springer, New York, 1977 | MR | Zbl
[4] Berger M., Ganduchon P., Mazet E., Le Spectre d'une Variété Riemannienne, Lecture Notes in Math., 194, Springer, New York, 1971 | Zbl