On the behavior of bounded solutions of the equation $\Delta u-c(x)u=0$ on a~Riemannian manifold of a special type
Matematičeskie zametki, Tome 65 (1999) no. 2, pp. 215-221.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_65_2_a5,
     author = {A. G. Losev},
     title = {On the behavior of bounded solutions of the equation $\Delta u-c(x)u=0$ on {a~Riemannian} manifold of a special type},
     journal = {Matemati\v{c}eskie zametki},
     pages = {215--221},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a5/}
}
TY  - JOUR
AU  - A. G. Losev
TI  - On the behavior of bounded solutions of the equation $\Delta u-c(x)u=0$ on a~Riemannian manifold of a special type
JO  - Matematičeskie zametki
PY  - 1999
SP  - 215
EP  - 221
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a5/
LA  - ru
ID  - MZM_1999_65_2_a5
ER  - 
%0 Journal Article
%A A. G. Losev
%T On the behavior of bounded solutions of the equation $\Delta u-c(x)u=0$ on a~Riemannian manifold of a special type
%J Matematičeskie zametki
%D 1999
%P 215-221
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a5/
%G ru
%F MZM_1999_65_2_a5
A. G. Losev. On the behavior of bounded solutions of the equation $\Delta u-c(x)u=0$ on a~Riemannian manifold of a special type. Matematičeskie zametki, Tome 65 (1999) no. 2, pp. 215-221. http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a5/

[1] Grigoryan A. A., Nadirashvili N. S., “Liuvillevy teoremy i vneshnie kraevye zadachi”, Izv. vuzov. Matem., 1987, no. 5, 25–33 | MR

[2] Losev A. G., “Nekotorye liuvillevy teoremy na rimanovykh mnogoobraziyakh spetsialnogo vida”, Izv. vuzov. Matem., 1991, no. 12, 15–24 | MR | Zbl

[3] Sario L., Nakai M., Wang C., Chung L. O., Classification Theory of Riemannian Manifolds, Lecture Notes in Math., 605, Springer, New York, 1977 | MR | Zbl

[4] Berger M., Ganduchon P., Mazet E., Le Spectre d'une Variété Riemannienne, Lecture Notes in Math., 194, Springer, New York, 1971 | Zbl