Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_65_2_a3, author = {J. C. Garcia}, title = {On the structure of a~cone of normal unbounded completely positive maps}, journal = {Matemati\v{c}eskie zametki}, pages = {194--205}, publisher = {mathdoc}, volume = {65}, number = {2}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a3/} }
J. C. Garcia. On the structure of a~cone of normal unbounded completely positive maps. Matematičeskie zametki, Tome 65 (1999) no. 2, pp. 194-205. http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a3/
[1] Chebotarev A. M., “O dostatochnykh usloviyakh konservativnosti minimalnoi dinamicheskoi polugruppy”, Matem. zametki, 52:4 (1992), 112–127 | MR | Zbl
[2] Chebotarev A. M., “Minimal solutions in classical and quantum probability”, Quantum Probability and Related Topics VII, ed. L. Accardi, World Sci. Publ., Singapore, 1992, 79–91 | MR | Zbl
[3] Chebotarev A. M., García J., Quezada R., “A priori estimates and existence theorems for the Lindblad equation with unbounded, time-dependent coefficients”, Recent Trends in Infinite Dimensional Non-Commutative Analysis, Publ. Res. Inst. Math. Sci. Kokyuroku, 1035, Kyoto Univ., Kyoto, 1998, 44–65 | MR
[4] Parthasaraty K. R., An Introduction to Quantum Stochastic Calculus, Birkhäuser, Berlin, 1992
[5] Bratelli O., Robinson D. W., Operator Algebras and Quantum Statistical Mechanics, V. I, Springer, Berlin, 1981
[6] Kraus K., “General state changes in quantum theory”, Ann. Physics, 64 (1971), 311–335 | DOI | MR
[7] Kelley J. L., General Topology, Grad. Texts in Math., Springer, New York, 1955
[8] Obata N., White Noise Calculus and Fock Space, Lecture Notes in Math., 1577, Springer, Berlin–Heidelberg, 1994 | MR | Zbl
[9] Kato T., Perturbation Theory of Linear Operators, Springer, New York, 1966
[10] Treves F., Topological Vector Spaces, Distributions and Kernels, Acad. Press, New York–San Francisco–London, 1967 | Zbl
[11] Joshi K. D., Introduction to General Topology, Wiley, New York–Chichester–Brisbane–Ontario–Singapore, 1983 | Zbl
[12] Reed M., Barry S., Methods of Modern Mathematical Physics. V. 1. Functional Analysis, Acad. Press, New York–London–Toronto–Sidney–San Francisco, 1980