Functional properties of Privalov spaces of holomorphic functions of several variables
Matematičeskie zametki, Tome 65 (1999) no. 2, pp. 280-288.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_65_2_a12,
     author = {A. V. Subbotin},
     title = {Functional properties of {Privalov} spaces of holomorphic functions of several variables},
     journal = {Matemati\v{c}eskie zametki},
     pages = {280--288},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a12/}
}
TY  - JOUR
AU  - A. V. Subbotin
TI  - Functional properties of Privalov spaces of holomorphic functions of several variables
JO  - Matematičeskie zametki
PY  - 1999
SP  - 280
EP  - 288
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a12/
LA  - ru
ID  - MZM_1999_65_2_a12
ER  - 
%0 Journal Article
%A A. V. Subbotin
%T Functional properties of Privalov spaces of holomorphic functions of several variables
%J Matematičeskie zametki
%D 1999
%P 280-288
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a12/
%G ru
%F MZM_1999_65_2_a12
A. V. Subbotin. Functional properties of Privalov spaces of holomorphic functions of several variables. Matematičeskie zametki, Tome 65 (1999) no. 2, pp. 280-288. http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a12/

[1] Rudin U., Teoriya funktsii v share iz $\mathbb C^n$, Mir, M., 1984 | Zbl

[2] Rudin U., Teoriya funktsii v polikruge, Mir, M., 1974 | Zbl

[3] Privalov I. I., Granichnye svoistva odnoznachnykh analiticheskikh funktsii, Izd-vo MGU, M., 1941

[4] Stoll M., “Mean growth and Taylor coefficients of some topological algebras of analytic functions”, Ann. Polon. Math., 35 (1977), 139–158 | MR | Zbl

[5] Mochizuki N., “Algebras of holomorphic functions between $H^p$ and $N_*$”, Proc. Amer. Math. Soc., 105 (1989), 898–902 | DOI | MR | Zbl

[6] Meštrović R., Pavićević \v Z., “Remarks on some classes of holomorphic functions”, Math. Montisnigri, 6 (1996), 27 | MR

[7] Stoll M., “Harmonic majorants for plurisubharmonic functions”, J. Reine Angew. Math., 282 (1976), 80–87 | MR | Zbl

[8] Kim H. O., “On closed maximal ideals of $M$”, Proc. Japan Acad. Ser. A. Math. Sci., 62:9 (1986), 343–346 | DOI | MR | Zbl

[9] Kim H. O., “On an $F$-algebra of holomorphic functions”, Canad. J. Math., 40:3 (1988), 718–741 | MR

[10] Choe B. R., Kim H. O., “On the boundary behavior of functions holomorphic on the ball”, Complex Variables Theory Appl., 20 (1992), 53–61 | MR | Zbl

[11] Kim H. O., Park Y. Y., “Maximal functions of plurisubharmonic functions”, Tsukuba J. Math., 16:1 (1992), 11–18 | MR | Zbl

[12] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, 2-e izd., GITTL, M.–L., 1950

[13] Shapiro J., Shields A., “Unusual topological properties of the Nevanlinna class”, Amer. J. Math., 97 (1975), 915–936 | DOI | MR