Bioperads and Hopf bialgebras in cobordism theory
Matematičeskie zametki, Tome 65 (1999) no. 2, pp. 270-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_65_2_a11,
     author = {V. A. Smirnov},
     title = {Bioperads and {Hopf} bialgebras in cobordism theory},
     journal = {Matemati\v{c}eskie zametki},
     pages = {270--279},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a11/}
}
TY  - JOUR
AU  - V. A. Smirnov
TI  - Bioperads and Hopf bialgebras in cobordism theory
JO  - Matematičeskie zametki
PY  - 1999
SP  - 270
EP  - 279
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a11/
LA  - ru
ID  - MZM_1999_65_2_a11
ER  - 
%0 Journal Article
%A V. A. Smirnov
%T Bioperads and Hopf bialgebras in cobordism theory
%J Matematičeskie zametki
%D 1999
%P 270-279
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a11/
%G ru
%F MZM_1999_65_2_a11
V. A. Smirnov. Bioperads and Hopf bialgebras in cobordism theory. Matematičeskie zametki, Tome 65 (1999) no. 2, pp. 270-279. http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a11/

[1] Smirnov V. A., “Vtorichnye operatsii v gomologiyakh operady $E$”, Izv. RAN, 56:2 (1992), 449–468

[2] May J. P., The Geometry of Iterated Loop Spaces, Lecture Notes in Math., 271, Springer, Berlin, 1972 | MR | Zbl

[3] Ravenel D. C., Wilson W. S., “The Hopf ring for complex cobordism”, J. Pure Appl. Algebra, 9 (1977), 241–280 | DOI | MR | Zbl

[4] Bruner R., May J. P., McCluer J. E., Steinberger M., $H_\infty $ Ring Spectra and their Applications, Lecture Notes in Math., 1176, Springer, Berlin, 1986 | MR | Zbl

[5] May J. P., Quinn F., Ray N., Tornehaive J., $E_\infty $-Ring Space and $E_\infty $-Ring Spectra, Lecture Notes in Math., 577, Springer, Berlin, 1977 | MR | Zbl

[6] Dieck T., “Steenrod-Operationen in Kobordism-Theorien”, Math. Z., 107 (1968), 380–401 | DOI | MR | Zbl