Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_65_2_a10, author = {P. V. Semenov}, title = {Local paraconvexity and a~local selection theorem}, journal = {Matemati\v{c}eskie zametki}, pages = {261--269}, publisher = {mathdoc}, volume = {65}, number = {2}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a10/} }
P. V. Semenov. Local paraconvexity and a~local selection theorem. Matematičeskie zametki, Tome 65 (1999) no. 2, pp. 261-269. http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a10/
[1] Michael E., “Continuous selections, II”, Ann. of Math., 64 (1956), 562–580 | DOI | MR | Zbl
[2] Pixley C., “An example concerning continuous selections on infinite dimensional spaces”, Proc. Amer. Math. Soc., 43 (1974), 237–244 | DOI | MR | Zbl
[3] Michael E., “Selection theorems with and without dimensional restrictions”, Internat. Conference in Memory of F. Hausdorff, Math. Res., 67, Akademie-Verlag, Berlin, 1992, 218–222 | MR | Zbl
[4] Michael E., “Continuous selections, I”, Ann. of Math., 63 (1956), 361–382 | DOI | MR | Zbl
[5] Michael E., “Paraconvex sets”, Math. Scand., 7 (1959), 372–376 | MR
[6] Semenov P. V., “O paravypuklosti zvezdnopodobnykh mnozhestv”, Sib. matem. zh., 37:2 (1996), 399–405 | MR | Zbl
[7] Semenov P. V., “Vypuklye secheniya grafikov nepreryvnykh funktsii”, Matem. zametki, 50:5 (1991), 75–80 | MR
[8] Repovš D., Semenov P. V., “On paraconvexity of graphs of continuous functions”, Set-Valued Anal., 3 (1995), 23–32 | DOI | MR | Zbl
[9] Repovš D., Semenov P. V., “On functions of nonconvexity for graphs of continuous functions”, J. Math. Anal. Appl., 196 (1995), 1021–1029 | DOI | MR | Zbl
[10] Semenov P. V., “Funktsionalno paravypuklye mnozhestva”, Matem. zametki, 54:6 (1993), 74–91