Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_65_2_a0, author = {S. A. Antonyan}, title = {Based free compact {Lie} group actions on the {Hilbert} cube}, journal = {Matemati\v{c}eskie zametki}, pages = {163--174}, publisher = {mathdoc}, volume = {65}, number = {2}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a0/} }
S. A. Antonyan. Based free compact Lie group actions on the Hilbert cube. Matematičeskie zametki, Tome 65 (1999) no. 2, pp. 163-174. http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a0/
[1] Chepmen T. A., Lektsii o $Q$-mnogoobraziyakh, Mir, M., 1981
[2] Fedorchuk V. V., Chigogidze A. Ch., Absolyutnye retrakty i beskonechnomernye mnogoobraziya, Nauka, M., 1992 | Zbl
[3] Berstein I., West J. E., “Based free compact Lie group actions on Hilbert cubes”, Algebraic and Geometric Topology, Part 1, Proc. Sympos. Pure Math., 32, 1987, 373–391 | MR
[4] Wong R. Y.-T., “Periodic actions on the Hilbert cube”, Fund. Math., 85:3 (1974), 203–210 | MR | Zbl
[5] Newman L. S. J., “Applications of group actions of finite complexes to Hilbert cube manifolds”, Proc. Amer. Math. Soc., 62:1 (1977), 183–187 | DOI | MR | Zbl
[6] Palais R., The classification of $G$-spaces, Mem. Amer. Math. Soc, 36, Amer. Math. Soc., Providence (R.I.), 1960
[7] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 | Zbl
[8] Antonian S. A., “An equivariant theory of retracts”, London Math. Soc. Lecture Note Ser., 93, 1985, 251–269 | MR | Zbl
[9] Antonian S. A., “Equivariant embeddings into $G$-$\operatorname {AR}$'s”, Glas. Mat. Ser. III, 22:1 (1987), 503–533 | MR | Zbl
[10] Antonyan S. A., “Retraktsionnye svoistva prostranstva orbit”, Matem. sb., 137 (179):3 (1988), 300–318 | Zbl
[11] Antonyan S. A., “Retrakty v kategoriyakh $G$-prostranstv”, Izv. AN ArmSSR. Ser. matem., 15:5 (1980), 365–378 | MR | Zbl
[12] Antonyan S. A., “Suschestvovanie sreza dlya proizvolnoi kompaktnoi gruppy preobrazovanii”, Matem. zametki, 56:5 (1994), 3–9 | MR | Zbl
[13] Hu S.-T., Theory of Retracts, Weyne State Univ. Press, Detroit, 1965
[14] de Vries J., “On the existence of the $G$-compactifications”, Bull. Acad. Polon. Sci. Ser. Math. Astr. Phys., 26 (1978), 275–280 | MR | Zbl
[15] Jaworowski J., “An equivariant extension theorem and $G$-retracts with finite structure”, Manuscripta Math., 35:3 (1981), 323–329 | DOI | MR | Zbl
[16] West J. E., Wong R. Y.-T., “Based free actions of finite groups on Hilbert cubes with absolute retract orbit spaces are conjugate”, Geometric Topology, Proc. 1977 Georgia Topology Conf., Acad. Press, London, 1979, 655–672
[17] Torunczyk H., “On $C\!E$-images of Hilbert cube and characterization of $Q$-manifolds”, Fund. Math., 106:1 (1980), 31–40 | MR | Zbl