Based free compact Lie group actions on the Hilbert cube
Matematičeskie zametki, Tome 65 (1999) no. 2, pp. 163-174.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_65_2_a0,
     author = {S. A. Antonyan},
     title = {Based free compact {Lie} group actions on the {Hilbert} cube},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--174},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a0/}
}
TY  - JOUR
AU  - S. A. Antonyan
TI  - Based free compact Lie group actions on the Hilbert cube
JO  - Matematičeskie zametki
PY  - 1999
SP  - 163
EP  - 174
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a0/
LA  - ru
ID  - MZM_1999_65_2_a0
ER  - 
%0 Journal Article
%A S. A. Antonyan
%T Based free compact Lie group actions on the Hilbert cube
%J Matematičeskie zametki
%D 1999
%P 163-174
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a0/
%G ru
%F MZM_1999_65_2_a0
S. A. Antonyan. Based free compact Lie group actions on the Hilbert cube. Matematičeskie zametki, Tome 65 (1999) no. 2, pp. 163-174. http://geodesic.mathdoc.fr/item/MZM_1999_65_2_a0/

[1] Chepmen T. A., Lektsii o $Q$-mnogoobraziyakh, Mir, M., 1981

[2] Fedorchuk V. V., Chigogidze A. Ch., Absolyutnye retrakty i beskonechnomernye mnogoobraziya, Nauka, M., 1992 | Zbl

[3] Berstein I., West J. E., “Based free compact Lie group actions on Hilbert cubes”, Algebraic and Geometric Topology, Part 1, Proc. Sympos. Pure Math., 32, 1987, 373–391 | MR

[4] Wong R. Y.-T., “Periodic actions on the Hilbert cube”, Fund. Math., 85:3 (1974), 203–210 | MR | Zbl

[5] Newman L. S. J., “Applications of group actions of finite complexes to Hilbert cube manifolds”, Proc. Amer. Math. Soc., 62:1 (1977), 183–187 | DOI | MR | Zbl

[6] Palais R., The classification of $G$-spaces, Mem. Amer. Math. Soc, 36, Amer. Math. Soc., Providence (R.I.), 1960

[7] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 | Zbl

[8] Antonian S. A., “An equivariant theory of retracts”, London Math. Soc. Lecture Note Ser., 93, 1985, 251–269 | MR | Zbl

[9] Antonian S. A., “Equivariant embeddings into $G$-$\operatorname {AR}$'s”, Glas. Mat. Ser. III, 22:1 (1987), 503–533 | MR | Zbl

[10] Antonyan S. A., “Retraktsionnye svoistva prostranstva orbit”, Matem. sb., 137 (179):3 (1988), 300–318 | Zbl

[11] Antonyan S. A., “Retrakty v kategoriyakh $G$-prostranstv”, Izv. AN ArmSSR. Ser. matem., 15:5 (1980), 365–378 | MR | Zbl

[12] Antonyan S. A., “Suschestvovanie sreza dlya proizvolnoi kompaktnoi gruppy preobrazovanii”, Matem. zametki, 56:5 (1994), 3–9 | MR | Zbl

[13] Hu S.-T., Theory of Retracts, Weyne State Univ. Press, Detroit, 1965

[14] de Vries J., “On the existence of the $G$-compactifications”, Bull. Acad. Polon. Sci. Ser. Math. Astr. Phys., 26 (1978), 275–280 | MR | Zbl

[15] Jaworowski J., “An equivariant extension theorem and $G$-retracts with finite structure”, Manuscripta Math., 35:3 (1981), 323–329 | DOI | MR | Zbl

[16] West J. E., Wong R. Y.-T., “Based free actions of finite groups on Hilbert cubes with absolute retract orbit spaces are conjugate”, Geometric Topology, Proc. 1977 Georgia Topology Conf., Acad. Press, London, 1979, 655–672

[17] Torunczyk H., “On $C\!E$-images of Hilbert cube and characterization of $Q$-manifolds”, Fund. Math., 106:1 (1980), 31–40 | MR | Zbl