@article{MZM_1999_65_1_a9,
author = {V. P. Maslov and O. Yu. Shvedov},
title = {Asymptotics of the density matrix of a~system of a~large number of identical particles},
journal = {Matemati\v{c}eskie zametki},
pages = {84--106},
year = {1999},
volume = {65},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_1_a9/}
}
V. P. Maslov; O. Yu. Shvedov. Asymptotics of the density matrix of a system of a large number of identical particles. Matematičeskie zametki, Tome 65 (1999) no. 1, pp. 84-106. http://geodesic.mathdoc.fr/item/MZM_1999_65_1_a9/
[1] Maslov V. P., Shvedov O. Yu., “Asymptotic solutions to the Wigner equation for systems of a large number of particles”, Russian J. Math. Phys., 3:1 (1995), 65–80 | MR | Zbl
[2] Maslov V. P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977
[3] Maslov V. P., Shvedov O. Yu., “Metod kompleksnogo rostka v prostranstve Foka. I: Asimptotiki tipa volnovykh paketov”, TMF, 104:2 (1995), 310–329 | MR | Zbl
[4] Maslov V. P., Shvedov O. Yu., “Metod kompleksnogo rostka v prostranstve Foka. II: Asimptotiki, otvechayuschie konechnomernym izotropnym mnogoobraziyam”, TMF, 104:3 (1995), 479–506 | MR | Zbl
[5] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | Zbl
[6] Karasev M. V., Maslov V. P., Nelineinaya skobka Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | Zbl
[7] Maslov V. P., Shvedov O. Yu., “An asymptotic formula for the $N$-particle density function as $N\to \infty $ and violation of the chaos hypothesis”, Russian J. Math. Phys., 2:2 (1994), 217–234 | MR | Zbl
[8] Maslov V. P., Shvedov O. Yu., “On the approximation for the quantum large canonical distribution”, Russian J. Math. Phys., 6:1 (1998), 80–89
[9] Kostrikin A. I., Vvedenie v algebru, Nauka, M., 1977 | Zbl
[10] Maslov V. P., Operatornye metody, Nauka, M., 1973
[11] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo MGU, M., 1965
[12] Berezin F. A., “Models of Gross–Neveu type are quantization of a classical mechanics with nonlinear phase space”, Comm. Math. Phys., 63 (1978), 131–153 | DOI | MR | Zbl