@article{MZM_1999_65_1_a8,
author = {V. A. Krasnov},
title = {Albanese homomorphism of the {Chow} group of 0-cycles of a~real algebraic variety},
journal = {Matemati\v{c}eskie zametki},
pages = {76--83},
year = {1999},
volume = {65},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_1_a8/}
}
V. A. Krasnov. Albanese homomorphism of the Chow group of 0-cycles of a real algebraic variety. Matematičeskie zametki, Tome 65 (1999) no. 1, pp. 76-83. http://geodesic.mathdoc.fr/item/MZM_1999_65_1_a8/
[1] Roitman A. A., “Ratsionalnaya ekvivalentnost nulmernykh tsiklov”, Matem. sb., 89:4 (1972), 569–585 | MR | Zbl
[2] Roitman A., “The torsion of the group of 0-cycles modulo rational equivalence”, Ann. of Math. (2), 111:3 (1980), 553–569 | DOI | MR
[3] Krasnov V. A., “Otobrazhenie Albaneze dlya $GM\mathbb Z$-mnogoobrazii”, Matem. zametki, 35:5 (1984), 739–747 | MR | Zbl
[4] Krasnov V. A., “Otobrazhenie Albaneze dlya veschestvennykh algebraicheskikh mnogoobrazii”, Matem. zametki, 32:3 (1982), 365–374 | MR | Zbl
[5] Colliot-Thélène J.-L., Ischebeck F., “L'équivalence rationnelle sur les cycles de dimension zéro des variétés algébriques réelles”, C. R. Acad. Sci. Paris. Sér. I. Math., 292 (1981), 723–725 | MR | Zbl
[6] Colliot-Thélène J.-L., Sansuc J.-J., Soulé C., “Torsion dans le groupe de Chow de codimension deux”, Duke Math. J., 50 (1983), 763–801 | DOI | MR | Zbl
[7] Colliot-Thélène J.-L., Parimala R., “Real components of algebraic varieties and étale cohomology”, Invent. Math., 101 (1990), 81–99 | DOI | MR | Zbl
[8] Bloch S., Lectures on Algebraic Cycles, Duke Univ. Press, Durham (N.C.), 1980 | Zbl
[9] Nikulin V. V., “On the Brauer group of real algebraic surfaces”, Algebraic Geometry and its Applications, Yaroslavl', 1992, 114–136
[10] Krasnov V. A., “Neravenstva Garnaka–Toma dlya otobrazhenii veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 47:2 (1983), 268–297 | MR
[11] Krasnov V. A., “Ob ekvivariantnykh kogomologiyakh Grotendika veschestvennogo algebraicheskogo mnogoobraziya i ikh prilozheniyakh”, Izv. RAN. Ser. matem., 58:3 (1994), 36–52 | MR | Zbl