Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_65_1_a6, author = {N. Sh. Zagirov}, title = {On polynomials with a~maximum graph length}, journal = {Matemati\v{c}eskie zametki}, pages = {61--69}, publisher = {mathdoc}, volume = {65}, number = {1}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_1_a6/} }
N. Sh. Zagirov. On polynomials with a~maximum graph length. Matematičeskie zametki, Tome 65 (1999) no. 1, pp. 61-69. http://geodesic.mathdoc.fr/item/MZM_1999_65_1_a6/
[1] Erdös P., “An extremum problem concerning trigonometric polynomials”, Acta Sci. Math. (Szeged), 9 (1939), 113–115 | Zbl
[2] Kristiansen G. K., “Some inequalities for algebraic ant trigonometric polynomials”, J. London Math. Soc. (2), 20:2 (1979), 300–315 | DOI | MR
[3] Bojanov B. D., “Proof of a conjecture of Erdös about the longest of polynomial”, Proc. Amer. Math. Soc., 84:1 (1982), 99–103 | DOI | MR | Zbl
[4] Bakan A. G., Nekotorye voprosy vypuklogo analiza i ikh prilozheniya v teorii funktsii, Diss. ... k. f.-m. n., Kiev, 1986
[5] Dolzhenko E. P., Sevastyanov E. A., “Ob opredelenii chebyshevskikh uzhei”, Vestn. MGU. Ser. 1. Matem., mekh., 1994, no. 3, 49–58 | MR
[6] Zagirov N. Sh., “Polynomials with extremal coefficients and snakes”, East J. Approx., 1:2 (1995), 231–248 | MR | Zbl
[7] Markov A. A., “Lektsii o funktsiyakh, naimenee uklonyayuschikhsya ot nulya”, Sobr. sochinenii, Gostekhizdat, M.–L., 1948, 244–291