A~class of evolution equations: Existence of solutions with functional boundary conditions
Matematičeskie zametki, Tome 65 (1999) no. 1, pp. 48-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_65_1_a5,
     author = {V. V. Goncharov and S. A. Timoshin},
     title = {A~class of evolution equations: {Existence} of solutions with functional boundary conditions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {48--60},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_1_a5/}
}
TY  - JOUR
AU  - V. V. Goncharov
AU  - S. A. Timoshin
TI  - A~class of evolution equations: Existence of solutions with functional boundary conditions
JO  - Matematičeskie zametki
PY  - 1999
SP  - 48
EP  - 60
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_65_1_a5/
LA  - ru
ID  - MZM_1999_65_1_a5
ER  - 
%0 Journal Article
%A V. V. Goncharov
%A S. A. Timoshin
%T A~class of evolution equations: Existence of solutions with functional boundary conditions
%J Matematičeskie zametki
%D 1999
%P 48-60
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_65_1_a5/
%G ru
%F MZM_1999_65_1_a5
V. V. Goncharov; S. A. Timoshin. A~class of evolution equations: Existence of solutions with functional boundary conditions. Matematičeskie zametki, Tome 65 (1999) no. 1, pp. 48-60. http://geodesic.mathdoc.fr/item/MZM_1999_65_1_a5/

[1] Goncharov V. V., “O suschestvovanii reshenii odnogo klassa differentsialnykh vklyuchenii na kompaktnom mnozhestve”, Sib. matem. zh., 31:5 (1990), 24–30 | MR

[2] Goncharov V. V., “Teoremy suschestvovaniya reshenii differentsialnykh vklyuchenii s polunepreryvnoi snizu pravoi chastyu na lokalno kompaktnom mnozhestve”, Differents. uravneniya, 27:12 (1991), 2058–2065 | MR

[3] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983 | Zbl

[4] Martin R. H., Nonlinear Operators and Differential Equations in Banach Spaces, Wiley, New York, 1976 | Zbl

[5] Toshiyuki I., “Global existence of mild solutions to semilinear differential equations in Banach spaces”, Hiroshima Math. J., 16 (1986), 499–530 | MR

[6] Deimling K., “Periodic solutions of differential equations in Banach spaces”, Manuscripta Math., 24 (1978), 31–44 | DOI | MR | Zbl

[7] Prüss J., “Periodic solutions of semilinear evolution equations”, Nonlinear Anal., 3:5 (1979), 601–612 | DOI | MR | Zbl

[8] Brykalov S. A., “Suschestvovanie i needinstvennost reshenii nekotorykh nelineinykh kraevykh zadach”, Dokl. RAN, 316:1 (1991), 18–21 | MR | Zbl

[9] Brykalov S. A., “Razreshimost nelineinoi kraevoi zadachi v fiksirovannom mnozhestve funktsii”, Differents. uravneniya, 27:12 (1991), 2027–2033 | MR

[10] Brykalov S. A., “A second-order nonlinear problem with two-point and integral boundary conditions”, Proc. Georgian Acad. Sci. Math., 1:3 (1993), 273–279 | MR | Zbl

[11] Deimling K., Ordinary Differential Equations in Banach Spaces, Springer, Berlin, 1977 | Zbl

[12] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1981

[13] Aubin J.-P., Cellina A., Differential Inclusions, Springer, Berlin, 1984

[14] Hiai F., Umegaki H., “Integrals, conditional expectations, and martingales of multivalued functions”, J. Multivariate Anal., 7 (1977), 149–182 | DOI | MR | Zbl

[15] Bressan A., Colombo G., “Extensions and selections of maps with decomposable values”, Studia Math., 90:1 (1988), 69–86 | MR | Zbl

[16] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1976 | Zbl