Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_65_1_a4, author = {L. Yu. Glebskii}, title = {Local linear operators and multicircuit solutions of homogeneous coupled map lattices}, journal = {Matemati\v{c}eskie zametki}, pages = {37--47}, publisher = {mathdoc}, volume = {65}, number = {1}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_1_a4/} }
L. Yu. Glebskii. Local linear operators and multicircuit solutions of homogeneous coupled map lattices. Matematičeskie zametki, Tome 65 (1999) no. 1, pp. 37-47. http://geodesic.mathdoc.fr/item/MZM_1999_65_1_a4/
[1] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | Zbl
[2] Theory and applications of coupled map lattices, ed. Kaneko K., Wiley, New York, 1993
[3] Afraimovich V. S., Chow Shu-Nee, Shen Wenxian, “Hyperbolic homoclinic points of $\mathbb Z^d$-actions in lattice dynamical systems”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6:6 (1996), 1059–1075 | DOI | MR | Zbl
[4] Lerman L. M., Shilnikov L. P., “Gomoklinicheskie struktury v beskonechnomernykh sistemakh”, Sib. matem. zh., 29:3 (1988), 92–103 | MR | Zbl
[5] Nitetski Z., Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975 | Zbl