Local linear operators and multicircuit solutions of homogeneous coupled map lattices
Matematičeskie zametki, Tome 65 (1999) no. 1, pp. 37-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_65_1_a4,
     author = {L. Yu. Glebskii},
     title = {Local linear operators and multicircuit solutions of homogeneous coupled map lattices},
     journal = {Matemati\v{c}eskie zametki},
     pages = {37--47},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_1_a4/}
}
TY  - JOUR
AU  - L. Yu. Glebskii
TI  - Local linear operators and multicircuit solutions of homogeneous coupled map lattices
JO  - Matematičeskie zametki
PY  - 1999
SP  - 37
EP  - 47
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_65_1_a4/
LA  - ru
ID  - MZM_1999_65_1_a4
ER  - 
%0 Journal Article
%A L. Yu. Glebskii
%T Local linear operators and multicircuit solutions of homogeneous coupled map lattices
%J Matematičeskie zametki
%D 1999
%P 37-47
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_65_1_a4/
%G ru
%F MZM_1999_65_1_a4
L. Yu. Glebskii. Local linear operators and multicircuit solutions of homogeneous coupled map lattices. Matematičeskie zametki, Tome 65 (1999) no. 1, pp. 37-47. http://geodesic.mathdoc.fr/item/MZM_1999_65_1_a4/

[1] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | Zbl

[2] Theory and applications of coupled map lattices, ed. Kaneko K., Wiley, New York, 1993

[3] Afraimovich V. S., Chow Shu-Nee, Shen Wenxian, “Hyperbolic homoclinic points of $\mathbb Z^d$-actions in lattice dynamical systems”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6:6 (1996), 1059–1075 | DOI | MR | Zbl

[4] Lerman L. M., Shilnikov L. P., “Gomoklinicheskie struktury v beskonechnomernykh sistemakh”, Sib. matem. zh., 29:3 (1988), 92–103 | MR | Zbl

[5] Nitetski Z., Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975 | Zbl