Tauberian-type gap conditions for Ces\`aro summation methods
Matematičeskie zametki, Tome 65 (1999) no. 1, pp. 118-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_65_1_a11,
     author = {S. A. Stepanyants},
     title = {Tauberian-type gap conditions for {Ces\`aro} summation methods},
     journal = {Matemati\v{c}eskie zametki},
     pages = {118--129},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_1_a11/}
}
TY  - JOUR
AU  - S. A. Stepanyants
TI  - Tauberian-type gap conditions for Ces\`aro summation methods
JO  - Matematičeskie zametki
PY  - 1999
SP  - 118
EP  - 129
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_65_1_a11/
LA  - ru
ID  - MZM_1999_65_1_a11
ER  - 
%0 Journal Article
%A S. A. Stepanyants
%T Tauberian-type gap conditions for Ces\`aro summation methods
%J Matematičeskie zametki
%D 1999
%P 118-129
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_65_1_a11/
%G ru
%F MZM_1999_65_1_a11
S. A. Stepanyants. Tauberian-type gap conditions for Ces\`aro summation methods. Matematičeskie zametki, Tome 65 (1999) no. 1, pp. 118-129. http://geodesic.mathdoc.fr/item/MZM_1999_65_1_a11/

[1] Khardi G., Raskhodyaschiesya ryady, IL, M., 1951

[2] Hardy G. H., Littlewood J. E., “A further note on the converse of Abel's theorem”, Proc. London Math. Soc., 25:2 (1926), 219–236 | DOI | MR

[3] Melnik V. I., “Tauberova teorema o “bolshikh pokazatelyakh” dlya metoda summirovaniya Borelya”, Matem. sb., 68:1 (1965), 17–25 | MR

[4] Krishnan V. K., “Gap Tauberian theorem for logarithmic summability ($L$)”, Quart J. Math. Oxford. Ser. (2), 30:2 (1979), 77–87 | DOI | MR | Zbl

[5] Rajagopal C. T., “On the relation of limitation theorems to high-indices theorems”, J. London Math. Soc., 28 (1953), 322–329 | DOI | MR | Zbl

[6] Stepanyants S. A., Usloviya tauberova tipa, svyazyvayuschie razlichnye metody summirovaniya, Diss. ... k. f.-m. n., MGU, M., 1996