Approximation of multidimensional functions with a~given majorant of mixed moduli of continuity
Matematičeskie zametki, Tome 65 (1999) no. 1, pp. 107-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_65_1_a10,
     author = {N. N. Pustovoitov},
     title = {Approximation of multidimensional functions with a~given majorant of mixed moduli of continuity},
     journal = {Matemati\v{c}eskie zametki},
     pages = {107--117},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_1_a10/}
}
TY  - JOUR
AU  - N. N. Pustovoitov
TI  - Approximation of multidimensional functions with a~given majorant of mixed moduli of continuity
JO  - Matematičeskie zametki
PY  - 1999
SP  - 107
EP  - 117
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_65_1_a10/
LA  - ru
ID  - MZM_1999_65_1_a10
ER  - 
%0 Journal Article
%A N. N. Pustovoitov
%T Approximation of multidimensional functions with a~given majorant of mixed moduli of continuity
%J Matematičeskie zametki
%D 1999
%P 107-117
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_65_1_a10/
%G ru
%F MZM_1999_65_1_a10
N. N. Pustovoitov. Approximation of multidimensional functions with a~given majorant of mixed moduli of continuity. Matematičeskie zametki, Tome 65 (1999) no. 1, pp. 107-117. http://geodesic.mathdoc.fr/item/MZM_1999_65_1_a10/

[1] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5, URSS, M., 1956, 483–522 | MR | Zbl

[2] Temlyakov V. N., Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi, Tr. MIAN, 178, Nauka, M., 1986 | MR | Zbl

[3] Pustovoitov N. N., “Predstavlenie i priblizhenie periodicheskikh funktsii mnogikh peremennykh s zadannym smeshannym modulem nepreryvnosti”, Anal. Math., 20 (1994), 35–48 | DOI | MR

[4] Pustovoitov N. N., “O kharakterizatsii prostranstva $H_1^\Omega$”, Matem. zametki, 60:1 (1996), 144–148 | MR | Zbl

[5] Temlyakov V. N., “Ob otsenkakh ortopoperechnikov klassov funktsii s ogranichennoi smeshannoi proizvodnoi”, Voprosy chistoi i prikl. matem. Dokl. po matem. i ee prilozh., 1:1 (1987), 3–30 | MR

[6] Babenko K. I., “O priblizhenii periodicheskikh funktsii mnogikh peremennykh trigonometricheskimi mnogochlenami”, Dokl. AN SSSR, 132:2 (1960), 247–250 | MR | Zbl

[7] Bugrov Ya. S., “Priblizhenie klassa funktsii s dominiruyuschei smeshannoi proizvodnoi”, Matem. sb., 64 (106):3 (1964), 410–418 | MR | Zbl

[8] Nikolskaya N. S., “Priblizhenie periodicheskikh funktsii klassa $S\!H_{p^*}^r$ summami Fure”, Sib. matem. zh., 16:4 (1975), 761–780 | MR | Zbl

[9] Nikolskaya N. S., “Esche o priblizhenii periodicheskikh funktsii klassov $S\!H_{p^*}^r$ summami Fure”, Sib. matem. zh., 21:4 (1980), 180–193 | MR | Zbl

[10] Galeev E. M., “Poperechniki po Kolmogorovu klassov periodicheskikh funktsii mnogikh peremennykh $W_p^{\overline\alpha}$ i $H_p^{\overline\alpha}$ v prostranstve $L_q$”, Izv. AN SSSR. Ser. matem., 49:5 (1985), 916–934 | MR | Zbl

[11] Galeev E. M., “Priblizhenie klassov periodicheskikh funktsii neskolkikh peremennykh yadernymi operatorami”, Matem. zametki, 47:3 (1990), 32–41 | MR | Zbl

[12] Din Zung, “Priblizhenie klassov gladkikh funktsii mnogikh peremennykh”, Tr. sem. im. I. G. Petrovskogo, 10, Izd-vo Mosk. un-ta, M., 1984, 207–226 | Zbl

[13] Din Zung, “Priblizhenie funktsii mnogikh peremennykh na tore trigonometricheskimi polinomami”, Matem. sb., 131:2 (1986), 251–271 | MR | Zbl