Cartan--Grauert theorem for tuboids with ``curvilinear'' edge
Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 888-901.

Voir la notice de l'article provenant de la source Math-Net.Ru

Tuboids are tube type domains with totally real edge that are asymptotically approximated near the edge points by local tubes over convex cones. For these domains we prove an analog of the Cartan–Grauert theorem on holomorphic convexity of domains in $\mathbb R^n\subset\mathbb C^n$.
@article{MZM_1998_64_6_a9,
     author = {I. V. Maresin},
     title = {Cartan--Grauert theorem for tuboids with ``curvilinear'' edge},
     journal = {Matemati\v{c}eskie zametki},
     pages = {888--901},
     publisher = {mathdoc},
     volume = {64},
     number = {6},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a9/}
}
TY  - JOUR
AU  - I. V. Maresin
TI  - Cartan--Grauert theorem for tuboids with ``curvilinear'' edge
JO  - Matematičeskie zametki
PY  - 1998
SP  - 888
EP  - 901
VL  - 64
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a9/
LA  - ru
ID  - MZM_1998_64_6_a9
ER  - 
%0 Journal Article
%A I. V. Maresin
%T Cartan--Grauert theorem for tuboids with ``curvilinear'' edge
%J Matematičeskie zametki
%D 1998
%P 888-901
%V 64
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a9/
%G ru
%F MZM_1998_64_6_a9
I. V. Maresin. Cartan--Grauert theorem for tuboids with ``curvilinear'' edge. Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 888-901. http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a9/

[1] Cartan H., “Variétés analytiques réelles et variétés analytiques complexes”, Bull. Soc. Math. France, 85 (1957), 77–100 | MR

[2] Grauert H., “On Levi's problem and the embedding of real analytic manifolds”, Ann. of Math. (2), 68 (1958), 460–472 | DOI | MR | Zbl

[3] Bros J., Iagolnitzer D., Tuboides et structure analytique des distributions, Sém. Goulaouic–Lions–Schwartz, no. 16, 1975; no. 18

[4] Bros J., Iagolnitzer D., “Tuboides dans $\mathbb C^n$ et généralisation d'un théoréme de Grauert”, Ann. Inst. Fourier (Grenoble), 26:3 (1976), 49–72 | MR | Zbl

[5] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968