Cartan–Grauert theorem for tuboids with “curvilinear” edge
Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 888-901
Cet article a éte moissonné depuis la source Math-Net.Ru
Tuboids are tube type domains with totally real edge that are asymptotically approximated near the edge points by local tubes over convex cones. For these domains we prove an analog of the Cartan–Grauert theorem on holomorphic convexity of domains in $\mathbb R^n\subset\mathbb C^n$.
@article{MZM_1998_64_6_a9,
author = {I. V. Maresin},
title = {Cartan{\textendash}Grauert theorem for tuboids with {\textquotedblleft}curvilinear{\textquotedblright} edge},
journal = {Matemati\v{c}eskie zametki},
pages = {888--901},
year = {1998},
volume = {64},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a9/}
}
I. V. Maresin. Cartan–Grauert theorem for tuboids with “curvilinear” edge. Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 888-901. http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a9/
[1] Cartan H., “Variétés analytiques réelles et variétés analytiques complexes”, Bull. Soc. Math. France, 85 (1957), 77–100 | MR
[2] Grauert H., “On Levi's problem and the embedding of real analytic manifolds”, Ann. of Math. (2), 68 (1958), 460–472 | DOI | MR | Zbl
[3] Bros J., Iagolnitzer D., Tuboides et structure analytique des distributions, Sém. Goulaouic–Lions–Schwartz, no. 16, 1975; no. 18
[4] Bros J., Iagolnitzer D., “Tuboides dans $\mathbb C^n$ et généralisation d'un théoréme de Grauert”, Ann. Inst. Fourier (Grenoble), 26:3 (1976), 49–72 | MR | Zbl
[5] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968