Different definitions of homogeneity of real hypersurfaces in $\mathbb C^2$
Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 881-887.

Voir la notice de l'article provenant de la source Math-Net.Ru

The coincidence of two definitions of local homogeneity for real-analytic hypersurfaces in two-dimensional complex spaces is proved. It is shown that if any two germs of a Levi nondegenerate nonspherical surface $M$ are equivalent, then this surface has a local Lie group structure: $M$ then acts transitively on itself by left shifts, and each such shift is a local holomorphic transformation of $\mathbb C^2$.
@article{MZM_1998_64_6_a8,
     author = {A. V. Loboda},
     title = {Different definitions of homogeneity of real hypersurfaces in $\mathbb C^2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {881--887},
     publisher = {mathdoc},
     volume = {64},
     number = {6},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a8/}
}
TY  - JOUR
AU  - A. V. Loboda
TI  - Different definitions of homogeneity of real hypersurfaces in $\mathbb C^2$
JO  - Matematičeskie zametki
PY  - 1998
SP  - 881
EP  - 887
VL  - 64
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a8/
LA  - ru
ID  - MZM_1998_64_6_a8
ER  - 
%0 Journal Article
%A A. V. Loboda
%T Different definitions of homogeneity of real hypersurfaces in $\mathbb C^2$
%J Matematičeskie zametki
%D 1998
%P 881-887
%V 64
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a8/
%G ru
%F MZM_1998_64_6_a8
A. V. Loboda. Different definitions of homogeneity of real hypersurfaces in $\mathbb C^2$. Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 881-887. http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a8/

[1] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifolds”, Acta Math., 133:3 (1974), 219–271 | DOI | MR

[2] Beloshapka V. K., Vitushkin A. G., “Otsenki radiusa skhodimosti stepennykh ryadov, zadayuschikh otobrazheniya analiticheskikh giperpoverkhnostei”, Izv. AN SSSR. Ser. matem., 45:5 (1981), 962–984 | MR | Zbl

[3] Ehlers F., Neumann W. D., Scherk J., “Links of surface singularities and CR space forms”, Comment. Math. Helv., 62 (1987), 240–264 | DOI | MR | Zbl

[4] Loboda A. V., “O nekotorykh invariantakh trubchatykh giperpoverkhnostei v $\mathbb C^2$”, Matem. zametki, 59:2 (1996), 211–223 | MR | Zbl

[5] Cartan E., “Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Mat. Pura Appl., 11 (4) (1932), 17–90

[6] Morimoto A., Nagano T., “On pseudo-conformal transformations of hypersurfaces”, J. Math. Soc. Japan, 15:3 (1963), 289–300 | MR | Zbl

[7] Rossi H., “Homogeneous strongly pseudoconvex hypersurfaces”, Rice Univ. Studies, 59:1 (1973), 131–145 | MR | Zbl

[8] Webster S. M., “On the Moser normal form at a nonumbilic point”, Math. Ann., 233:2 (1978), 97–102 | DOI | MR | Zbl

[9] Burns D., Shneider S., Wells R. O., “Deformations of strictly pseudoconvex domains”, Invent. Math., 46:3 (1978), 237–253 | DOI | MR | Zbl