Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1998_64_6_a8, author = {A. V. Loboda}, title = {Different definitions of homogeneity of real hypersurfaces in $\mathbb C^2$}, journal = {Matemati\v{c}eskie zametki}, pages = {881--887}, publisher = {mathdoc}, volume = {64}, number = {6}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a8/} }
A. V. Loboda. Different definitions of homogeneity of real hypersurfaces in $\mathbb C^2$. Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 881-887. http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a8/
[1] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifolds”, Acta Math., 133:3 (1974), 219–271 | DOI | MR
[2] Beloshapka V. K., Vitushkin A. G., “Otsenki radiusa skhodimosti stepennykh ryadov, zadayuschikh otobrazheniya analiticheskikh giperpoverkhnostei”, Izv. AN SSSR. Ser. matem., 45:5 (1981), 962–984 | MR | Zbl
[3] Ehlers F., Neumann W. D., Scherk J., “Links of surface singularities and CR space forms”, Comment. Math. Helv., 62 (1987), 240–264 | DOI | MR | Zbl
[4] Loboda A. V., “O nekotorykh invariantakh trubchatykh giperpoverkhnostei v $\mathbb C^2$”, Matem. zametki, 59:2 (1996), 211–223 | MR | Zbl
[5] Cartan E., “Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Mat. Pura Appl., 11 (4) (1932), 17–90
[6] Morimoto A., Nagano T., “On pseudo-conformal transformations of hypersurfaces”, J. Math. Soc. Japan, 15:3 (1963), 289–300 | MR | Zbl
[7] Rossi H., “Homogeneous strongly pseudoconvex hypersurfaces”, Rice Univ. Studies, 59:1 (1973), 131–145 | MR | Zbl
[8] Webster S. M., “On the Moser normal form at a nonumbilic point”, Math. Ann., 233:2 (1978), 97–102 | DOI | MR | Zbl
[9] Burns D., Shneider S., Wells R. O., “Deformations of strictly pseudoconvex domains”, Invent. Math., 46:3 (1978), 237–253 | DOI | MR | Zbl