Different definitions of homogeneity of real hypersurfaces in $\mathbb C^2$
Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 881-887

Voir la notice de l'article provenant de la source Math-Net.Ru

The coincidence of two definitions of local homogeneity for real-analytic hypersurfaces in two-dimensional complex spaces is proved. It is shown that if any two germs of a Levi nondegenerate nonspherical surface $M$ are equivalent, then this surface has a local Lie group structure: $M$ then acts transitively on itself by left shifts, and each such shift is a local holomorphic transformation of $\mathbb C^2$.
@article{MZM_1998_64_6_a8,
     author = {A. V. Loboda},
     title = {Different definitions of homogeneity of real hypersurfaces in $\mathbb C^2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {881--887},
     publisher = {mathdoc},
     volume = {64},
     number = {6},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a8/}
}
TY  - JOUR
AU  - A. V. Loboda
TI  - Different definitions of homogeneity of real hypersurfaces in $\mathbb C^2$
JO  - Matematičeskie zametki
PY  - 1998
SP  - 881
EP  - 887
VL  - 64
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a8/
LA  - ru
ID  - MZM_1998_64_6_a8
ER  - 
%0 Journal Article
%A A. V. Loboda
%T Different definitions of homogeneity of real hypersurfaces in $\mathbb C^2$
%J Matematičeskie zametki
%D 1998
%P 881-887
%V 64
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a8/
%G ru
%F MZM_1998_64_6_a8
A. V. Loboda. Different definitions of homogeneity of real hypersurfaces in $\mathbb C^2$. Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 881-887. http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a8/