Different definitions of homogeneity of real hypersurfaces in $\mathbb C^2$
Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 881-887
Voir la notice de l'article provenant de la source Math-Net.Ru
The coincidence of two definitions of local homogeneity for real-analytic hypersurfaces in two-dimensional complex spaces is proved. It is shown that if any two germs of a Levi nondegenerate nonspherical surface $M$ are equivalent, then this surface has a local Lie group structure: $M$ then acts transitively on itself by left shifts, and each such shift is a local holomorphic transformation of $\mathbb C^2$.
@article{MZM_1998_64_6_a8,
author = {A. V. Loboda},
title = {Different definitions of homogeneity of real hypersurfaces in $\mathbb C^2$},
journal = {Matemati\v{c}eskie zametki},
pages = {881--887},
publisher = {mathdoc},
volume = {64},
number = {6},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a8/}
}
A. V. Loboda. Different definitions of homogeneity of real hypersurfaces in $\mathbb C^2$. Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 881-887. http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a8/