On four-sheeted polynomial mappings of $\mathbb C^2$. I. The case of an irreducible ramification curve
Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 847-862.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the Jacobian Conjecture: a polynomial mapping $f\colon\mathbb C^2\to\mathbb C^2$ with a constant nonzero Jacobian is polynomially invertible. The main result of the paper is as follows. There is no four-sheeted polynomial mapping whose Jacobian is a nonzero constant such that after the resolution of the indeterminacy points at infinity there is only one added curve whose image is not a point and does not belong to infinity.
@article{MZM_1998_64_6_a5,
     author = {A. V. Domrina and S. Yu. Orevkov},
     title = {On four-sheeted polynomial mappings of $\mathbb C^2$. {I.} {The} case of an irreducible ramification curve},
     journal = {Matemati\v{c}eskie zametki},
     pages = {847--862},
     publisher = {mathdoc},
     volume = {64},
     number = {6},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a5/}
}
TY  - JOUR
AU  - A. V. Domrina
AU  - S. Yu. Orevkov
TI  - On four-sheeted polynomial mappings of $\mathbb C^2$. I. The case of an irreducible ramification curve
JO  - Matematičeskie zametki
PY  - 1998
SP  - 847
EP  - 862
VL  - 64
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a5/
LA  - ru
ID  - MZM_1998_64_6_a5
ER  - 
%0 Journal Article
%A A. V. Domrina
%A S. Yu. Orevkov
%T On four-sheeted polynomial mappings of $\mathbb C^2$. I. The case of an irreducible ramification curve
%J Matematičeskie zametki
%D 1998
%P 847-862
%V 64
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a5/
%G ru
%F MZM_1998_64_6_a5
A. V. Domrina; S. Yu. Orevkov. On four-sheeted polynomial mappings of $\mathbb C^2$. I. The case of an irreducible ramification curve. Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 847-862. http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a5/

[1] Vitushkin A. G., “On polynomial transformation of $\mathbb C^n$”, Manifolds (Tokyo, 1973), Tokyo Univ. Press, Tokyo, 1975, 415–417 | MR | Zbl

[2] Bass H., Connell E. H., Wright D., “The Jacobian Conjecture: reduction of degree and formal expansion of the inverse”, Bull. Amer. Math. Soc. (N.S.), 7:2 (1982), 287–330 | DOI | MR | Zbl

[3] Orevkov S. Yu., “O trekhlistnykh polinomialnykh otobrazheniyakh $\mathbb C^2$”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1231–1241 | MR

[4] Orevkov S. Yu., “Odin primer v svyazi s gipotezoi o yakobiane”, Matem. zametki, 47:1 (1990), 127–136 | MR

[5] Orevkov S. Yu., Coverings of Eisenbud–Neumann Splice Diagrams, Preprint, 1998

[6] Orevkov S. Yu., On the Jacobian Conjecture at Infinity, Preprint, 1998

[7] Eisenbud D., Neumann W. D., Three Dimensional Link Theory and Invariants of Plane Curve Singularities, Ann. of Math. Stud., 110, Princeton Univ. Press, Princeton (N.J.), 1985 | MR | Zbl

[8] Neumann W. D., “Complex algebraic plane curves via their links at infinity”, Invent. Math., 89 (1989), 445–489 | DOI

[9] Neumann W. D., “On bilinear forms represented by trees”, Bull. Austral. Math. Soc., 40 (1989), 303–321 | DOI | MR | Zbl

[10] Moh T.-T., “On the Jacobian Conjecture and the configuration of roots”, J. Reine Angew. Math., 340 (1983), 140–212 | MR | Zbl

[11] Heitmann R. C., “On the Jacobian Conjecture”, J. Pure Appl. Algebra, 64 (1990), 35–72 | DOI | MR | Zbl

[12] Orevkov S. Yu., “Acyclic algebraic surfaces bounded by Seifert spheres”, Osaka J. Math., 34:2 (1997), 457–480 | MR | Zbl

[13] Abhyankar S. S., Moh T.-T., “Newton–Puiseux expansions and generalised Tschirnhausen transformation. I; II”, J. Reine Angew. Math., 260 (1973), 47–83 | MR | Zbl

[14] Abhyankar S. S., On Expansion Techniques in Algebraic Geometry, Tata Inst. Fund. Res. Lectures on Math. and Phys., 57, Tata Inst. Fund. Res., Bombay, 1977 | MR | Zbl