Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1998_64_6_a5, author = {A. V. Domrina and S. Yu. Orevkov}, title = {On four-sheeted polynomial mappings of $\mathbb C^2$. {I.} {The} case of an irreducible ramification curve}, journal = {Matemati\v{c}eskie zametki}, pages = {847--862}, publisher = {mathdoc}, volume = {64}, number = {6}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a5/} }
TY - JOUR AU - A. V. Domrina AU - S. Yu. Orevkov TI - On four-sheeted polynomial mappings of $\mathbb C^2$. I. The case of an irreducible ramification curve JO - Matematičeskie zametki PY - 1998 SP - 847 EP - 862 VL - 64 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a5/ LA - ru ID - MZM_1998_64_6_a5 ER -
%0 Journal Article %A A. V. Domrina %A S. Yu. Orevkov %T On four-sheeted polynomial mappings of $\mathbb C^2$. I. The case of an irreducible ramification curve %J Matematičeskie zametki %D 1998 %P 847-862 %V 64 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a5/ %G ru %F MZM_1998_64_6_a5
A. V. Domrina; S. Yu. Orevkov. On four-sheeted polynomial mappings of $\mathbb C^2$. I. The case of an irreducible ramification curve. Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 847-862. http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a5/
[1] Vitushkin A. G., “On polynomial transformation of $\mathbb C^n$”, Manifolds (Tokyo, 1973), Tokyo Univ. Press, Tokyo, 1975, 415–417 | MR | Zbl
[2] Bass H., Connell E. H., Wright D., “The Jacobian Conjecture: reduction of degree and formal expansion of the inverse”, Bull. Amer. Math. Soc. (N.S.), 7:2 (1982), 287–330 | DOI | MR | Zbl
[3] Orevkov S. Yu., “O trekhlistnykh polinomialnykh otobrazheniyakh $\mathbb C^2$”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1231–1241 | MR
[4] Orevkov S. Yu., “Odin primer v svyazi s gipotezoi o yakobiane”, Matem. zametki, 47:1 (1990), 127–136 | MR
[5] Orevkov S. Yu., Coverings of Eisenbud–Neumann Splice Diagrams, Preprint, 1998
[6] Orevkov S. Yu., On the Jacobian Conjecture at Infinity, Preprint, 1998
[7] Eisenbud D., Neumann W. D., Three Dimensional Link Theory and Invariants of Plane Curve Singularities, Ann. of Math. Stud., 110, Princeton Univ. Press, Princeton (N.J.), 1985 | MR | Zbl
[8] Neumann W. D., “Complex algebraic plane curves via their links at infinity”, Invent. Math., 89 (1989), 445–489 | DOI
[9] Neumann W. D., “On bilinear forms represented by trees”, Bull. Austral. Math. Soc., 40 (1989), 303–321 | DOI | MR | Zbl
[10] Moh T.-T., “On the Jacobian Conjecture and the configuration of roots”, J. Reine Angew. Math., 340 (1983), 140–212 | MR | Zbl
[11] Heitmann R. C., “On the Jacobian Conjecture”, J. Pure Appl. Algebra, 64 (1990), 35–72 | DOI | MR | Zbl
[12] Orevkov S. Yu., “Acyclic algebraic surfaces bounded by Seifert spheres”, Osaka J. Math., 34:2 (1997), 457–480 | MR | Zbl
[13] Abhyankar S. S., Moh T.-T., “Newton–Puiseux expansions and generalised Tschirnhausen transformation. I; II”, J. Reine Angew. Math., 260 (1973), 47–83 | MR | Zbl
[14] Abhyankar S. S., On Expansion Techniques in Algebraic Geometry, Tata Inst. Fund. Res. Lectures on Math. and Phys., 57, Tata Inst. Fund. Res., Bombay, 1977 | MR | Zbl