On a family of extremum problems and the properties of an integral
Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 830-838.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following extremum problem is studied: $$ \int _0^1\bigl(y''(t)\bigr)^p\,dt\bigg/ \int _0^1\bigl(y'(t)\bigr)^q\,dt \to\min $$ over all $y$, with $y(0)=y(1)=0$ and $y'(0)=y'(1)=0$, which leads to the integral $$ \int_{\mathbb R}\bigl(\max(0,1+\mu x-|x|^q)\bigr)^{1/p'}\,dx $$ and yields exact estimates for the eigenvalues of differential operators in the generalized Lagrange problem on the stability of a column.
@article{MZM_1998_64_6_a3,
     author = {A. P. Buslaev and V. A. Kondrat'ev and A. I. Nazarov},
     title = {On a family of extremum problems and the properties of an integral},
     journal = {Matemati\v{c}eskie zametki},
     pages = {830--838},
     publisher = {mathdoc},
     volume = {64},
     number = {6},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a3/}
}
TY  - JOUR
AU  - A. P. Buslaev
AU  - V. A. Kondrat'ev
AU  - A. I. Nazarov
TI  - On a family of extremum problems and the properties of an integral
JO  - Matematičeskie zametki
PY  - 1998
SP  - 830
EP  - 838
VL  - 64
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a3/
LA  - ru
ID  - MZM_1998_64_6_a3
ER  - 
%0 Journal Article
%A A. P. Buslaev
%A V. A. Kondrat'ev
%A A. I. Nazarov
%T On a family of extremum problems and the properties of an integral
%J Matematičeskie zametki
%D 1998
%P 830-838
%V 64
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a3/
%G ru
%F MZM_1998_64_6_a3
A. P. Buslaev; V. A. Kondrat'ev; A. I. Nazarov. On a family of extremum problems and the properties of an integral. Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 830-838. http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a3/

[1] Keller J. B., “The shape of the strongest column”, Arch. Rational Mech. Anal., 5 (1960), 275–285 | DOI | MR

[2] Egorov Yu. V., Kondratev V. A., “Ob otsenkakh pervogo sobstvennogo znacheniya zadachi Shturma–Liuvillya”, UMN, 39:2 (1984), 151–152 | MR | Zbl

[3] Egorov Yu. V., Kondratev V. A., “Ob otsenke pervogo sobstvennogo znacheniya operatora Shturma–Liuvillya”, Vestn. MGU. Ser. 1. Matem., mekh., 1990, no. 6, 75–78 | Zbl

[4] Egorov Yu. V., Kondratev V. A., “Ob otsenke glavnogo sobstvennogo znacheniya operatora Shturma–Liuvillya”, Vestn. MGU. Ser. 1. Matem., mekh., 1991, no. 6, 5–11

[5] Egorov Yu. V., Kondratjev V. A., “On a Lagrange problem”, C. R. Acad. Sci. Paris. Sér. I. Math., 317 (1993), 903–918 | MR

[6] Nikitin Ya. Yu., Asimptoticheskaya effektivnost neparametricheskikh kriteriev, Nauka, M., 1995

[7] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979

[8] Lyapunov A. M., “Issledovanie odnogo iz osobennykh sluchaev zadachi ob ustoichivosti dvizheniya”, Sobr. sochinenii, T. 2, Izd-vo AN SSSR, M.–L., 1956

[9] Nirenberg L., Lektsii po nelineinomu funktsionalnomu analizu, Mir, M., 1977 | Zbl

[10] Dacorogna B., Ganbo W., Subiá N., “Sur une généralization de l'inégalité de Wirtinger”, Ann. Inst. H. Poincaré, 9:1 (1992), 29–50 | MR | Zbl