On a family of extremum problems and the properties of an integral
Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 830-838
Voir la notice de l'article provenant de la source Math-Net.Ru
The following extremum problem is studied:
$$
\int _0^1\bigl(y''(t)\bigr)^p\,dt\bigg/
\int _0^1\bigl(y'(t)\bigr)^q\,dt
\to\min
$$
over all $y$, with $y(0)=y(1)=0$ and $y'(0)=y'(1)=0$, which leads to the integral
$$
\int_{\mathbb R}\bigl(\max(0,1+\mu x-|x|^q)\bigr)^{1/p'}\,dx
$$
and yields exact estimates for the eigenvalues of differential operators in the generalized Lagrange problem on the stability of a column.
@article{MZM_1998_64_6_a3,
author = {A. P. Buslaev and V. A. Kondrat'ev and A. I. Nazarov},
title = {On a family of extremum problems and the properties of an integral},
journal = {Matemati\v{c}eskie zametki},
pages = {830--838},
publisher = {mathdoc},
volume = {64},
number = {6},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a3/}
}
TY - JOUR AU - A. P. Buslaev AU - V. A. Kondrat'ev AU - A. I. Nazarov TI - On a family of extremum problems and the properties of an integral JO - Matematičeskie zametki PY - 1998 SP - 830 EP - 838 VL - 64 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a3/ LA - ru ID - MZM_1998_64_6_a3 ER -
A. P. Buslaev; V. A. Kondrat'ev; A. I. Nazarov. On a family of extremum problems and the properties of an integral. Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 830-838. http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a3/