On the geometry of principal $T^1$-bundles over Hodge manifolds
Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 824-829.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Sasakian structures induced in principal $T^1$-bundles over Kähler manifolds. A natural model of a Sasakian manifold of constant $\Phi$-holomorphic sectional curvature -3 is constructed.
@article{MZM_1998_64_6_a2,
     author = {I. P. Borisovskii},
     title = {On the geometry of principal $T^1$-bundles over {Hodge} manifolds},
     journal = {Matemati\v{c}eskie zametki},
     pages = {824--829},
     publisher = {mathdoc},
     volume = {64},
     number = {6},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a2/}
}
TY  - JOUR
AU  - I. P. Borisovskii
TI  - On the geometry of principal $T^1$-bundles over Hodge manifolds
JO  - Matematičeskie zametki
PY  - 1998
SP  - 824
EP  - 829
VL  - 64
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a2/
LA  - ru
ID  - MZM_1998_64_6_a2
ER  - 
%0 Journal Article
%A I. P. Borisovskii
%T On the geometry of principal $T^1$-bundles over Hodge manifolds
%J Matematičeskie zametki
%D 1998
%P 824-829
%V 64
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a2/
%G ru
%F MZM_1998_64_6_a2
I. P. Borisovskii. On the geometry of principal $T^1$-bundles over Hodge manifolds. Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 824-829. http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a2/

[1] Gray J. W., “Some global properties of contact structures”, Ann. Math., 69 (1959), 421–450 | DOI | MR | Zbl

[2] Kobayashi S., “Principal fibre bundles with the 1-dimensional toroidal group”, Tôhoku Math. J. (2), 8 (1956), 29–45 | DOI | MR | Zbl

[3] Chern S. S., “Pseudo-groupes continus infinis”, Colloque de géométrie différentielle, Strasbourg, 1953, 119–136 | MR | Zbl

[4] Watanabe Y., “Riemannian metric on principal circle bundles over locally symmetric Kählerian manifolds”, Kodai Math. J., 5 (1982), 111–121 | DOI | MR | Zbl

[5] Ishihara I., “Anti-invariant submanifolds of a Sasakian space form”, Kodai Math. J., 2 (1979), 171–186 | DOI | MR | Zbl

[6] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, 2, Nauka, M., 1981

[7] Kirichenko V. F., “Differentsialnaya geometriya $K$-prostranstv”, Itogi nauki i tekhn. Problemy geometrii, 8, VINITI, M., 1977, 139–161

[8] Kirichenko V. F., “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhn. Problemy geometrii, 18, VINITI, M., 1986, 25–71 | MR

[9] de Andres L. C., Cordero L. A., Fernandez M., Mencia J. J., “Examples of four-dimensional compact locally conformal Kähler solvmanifolds”, Geom. Dedicata, 29:2 (1989), 227–232 | DOI | MR | Zbl

[10] Kirichenko V. F., “Aksioma $\Phi$-golomorfnykh ploskostei v kontaktnoi metricheskoi geometrii”, Izv. AN SSSR. Ser. matem., 48 (1984), 711–734 | MR | Zbl