Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1998_64_6_a14, author = {P. N. Zhevandrov and A. E. Merzon}, title = {Stability of entrained surface waves under small perturbations of the density of the upper layer}, journal = {Matemati\v{c}eskie zametki}, pages = {943--946}, publisher = {mathdoc}, volume = {64}, number = {6}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a14/} }
TY - JOUR AU - P. N. Zhevandrov AU - A. E. Merzon TI - Stability of entrained surface waves under small perturbations of the density of the upper layer JO - Matematičeskie zametki PY - 1998 SP - 943 EP - 946 VL - 64 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a14/ LA - ru ID - MZM_1998_64_6_a14 ER -
%0 Journal Article %A P. N. Zhevandrov %A A. E. Merzon %T Stability of entrained surface waves under small perturbations of the density of the upper layer %J Matematičeskie zametki %D 1998 %P 943-946 %V 64 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a14/ %G ru %F MZM_1998_64_6_a14
P. N. Zhevandrov; A. E. Merzon. Stability of entrained surface waves under small perturbations of the density of the upper layer. Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 943-946. http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a14/
[1] Bonnet-Ben Dhia A.-S., Joly P., SIAM J. Appl. Math., 53 (1993), 1507–1550 | DOI | MR | Zbl
[2] Kuznetsov N., J. Fluid Mech., 254 (1993), 113–126 | DOI | MR | Zbl
[3] Zhevandrov P. N., Russian J. Math. Phys., 5:4 (1997), 541–544 | MR | Zbl
[4] Komech A. I., Merzon A. E., Zhevandrov P. N., Russian J. Math. Phys., 4:4 (1996), 457–485 | MR
[5] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1989
[6] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982
[7] Ursell F., Proc. Roy. Soc. London. Ser. A, 214 (1952), 79–97 | DOI | MR | Zbl
[8] Merzon A. E., Zhevandrov P. N., “High-frequency asymptotics of edge waves on a beach of nonconstant slope”, SIAM J. Appl. Math. (to appear)