Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1998_64_6_a1, author = {Yu. Yu. Bakhtin}, title = {The law of the iterated logarithm for the solution of the {Burgers} equation with random initial data}, journal = {Matemati\v{c}eskie zametki}, pages = {812--823}, publisher = {mathdoc}, volume = {64}, number = {6}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a1/} }
TY - JOUR AU - Yu. Yu. Bakhtin TI - The law of the iterated logarithm for the solution of the Burgers equation with random initial data JO - Matematičeskie zametki PY - 1998 SP - 812 EP - 823 VL - 64 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a1/ LA - ru ID - MZM_1998_64_6_a1 ER -
Yu. Yu. Bakhtin. The law of the iterated logarithm for the solution of the Burgers equation with random initial data. Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 812-823. http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a1/
[1] Gurbatov S. N., Malakhov A. N., Saichev A. I., Nelineinye sluchainye volny v sredakh bez dispersii, Nauka, M., 1990 | Zbl
[2] Bulinskii A. V., Molchanov S. A., “Asimptoticheskaya gaussovost resheniya uravneniya Byurgersa so sluchainymi nachalnymi dannymi”, Teoriya veroyatn. i ee primeneniya, 36:2 (1991), 217–235 | MR
[3] Bulinski A. V., “Some problems of asymptotical analyses of nonlinear diffusion”, Probab. Theory Math. Statist., Proc. 6th USSR–Japan Symp., eds. A. N. Shiryaev et al., World Sci. Publ., Singapore, 1993, 32–46
[4] Bulinski A. V., “CLT for the solution of the multidimensional Burgers equation with random data”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 17:1 (1992), 11–22 | MR | Zbl
[5] Albeverio S., Molchanov S. A., Surgailis D., “Stratified structure of the Universe and Burgers' equation – a probabilistic approach”, Probab. Theory Related Fields, 100 (1994), 457–484 | DOI | MR | Zbl
[6] Griniv O. O., “Tsentralnaya predelnaya teorema dlya uravneniya Byurgersa”, TMF, 88:1 (1991), 7–13 | MR | Zbl
[7] Leonenko N., Orsingher E., “Limit theorems for solutions of the Burgers equation with Gaussian and non-Gaussian initial conditions”, Teoriya veroyatn. i ee primeneniya, 40:2 (1995), 387–403 | MR | Zbl
[8] Surgailis D., Woyczynsky W. A., “Burgers' equation with non-local shot-noise data”, J. Appl. Probab., 31 (1994), 351–362 | DOI | MR
[9] Hsing T. L., Teugels J. L., “Extremal properties of shot noise processes”, Adv. in Appl. Probab., 21 (1989), 513–525 | DOI | MR | Zbl
[10] Shiryaev A. N., Veroyatnost, Nauka, M., 1980 | Zbl
[11] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987
[12] Burton R., Waymire E., “Scaling limits for associated random measures”, Ann. Probab., 13:4 (1985), 1267–1278 | DOI | MR | Zbl
[13] Esary J. D., Proschan F., Walkup D. W., “Association of random variables, with applications”, Ann. Math. Statist., 38 (1967), 1466–1474 | DOI | MR | Zbl
[14] Newman C. M., Wright A. L., “An invariance principle for certain dependent sequences”, Ann. Probab., 9:4 (1981), 671–675 | DOI | MR | Zbl