The law of the iterated logarithm for the solution of the Burgers equation with random initial data
Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 812-823.

Voir la notice de l'article provenant de la source Math-Net.Ru

The law of the iterated logarithm is established for the solution of the one-dimensional Burgers equation in the case where the initial potential is described by a zero-range shot noise.
@article{MZM_1998_64_6_a1,
     author = {Yu. Yu. Bakhtin},
     title = {The law of the iterated logarithm for the solution of the {Burgers} equation with random initial data},
     journal = {Matemati\v{c}eskie zametki},
     pages = {812--823},
     publisher = {mathdoc},
     volume = {64},
     number = {6},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a1/}
}
TY  - JOUR
AU  - Yu. Yu. Bakhtin
TI  - The law of the iterated logarithm for the solution of the Burgers equation with random initial data
JO  - Matematičeskie zametki
PY  - 1998
SP  - 812
EP  - 823
VL  - 64
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a1/
LA  - ru
ID  - MZM_1998_64_6_a1
ER  - 
%0 Journal Article
%A Yu. Yu. Bakhtin
%T The law of the iterated logarithm for the solution of the Burgers equation with random initial data
%J Matematičeskie zametki
%D 1998
%P 812-823
%V 64
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a1/
%G ru
%F MZM_1998_64_6_a1
Yu. Yu. Bakhtin. The law of the iterated logarithm for the solution of the Burgers equation with random initial data. Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 812-823. http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a1/

[1] Gurbatov S. N., Malakhov A. N., Saichev A. I., Nelineinye sluchainye volny v sredakh bez dispersii, Nauka, M., 1990 | Zbl

[2] Bulinskii A. V., Molchanov S. A., “Asimptoticheskaya gaussovost resheniya uravneniya Byurgersa so sluchainymi nachalnymi dannymi”, Teoriya veroyatn. i ee primeneniya, 36:2 (1991), 217–235 | MR

[3] Bulinski A. V., “Some problems of asymptotical analyses of nonlinear diffusion”, Probab. Theory Math. Statist., Proc. 6th USSR–Japan Symp., eds. A. N. Shiryaev et al., World Sci. Publ., Singapore, 1993, 32–46

[4] Bulinski A. V., “CLT for the solution of the multidimensional Burgers equation with random data”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 17:1 (1992), 11–22 | MR | Zbl

[5] Albeverio S., Molchanov S. A., Surgailis D., “Stratified structure of the Universe and Burgers' equation – a probabilistic approach”, Probab. Theory Related Fields, 100 (1994), 457–484 | DOI | MR | Zbl

[6] Griniv O. O., “Tsentralnaya predelnaya teorema dlya uravneniya Byurgersa”, TMF, 88:1 (1991), 7–13 | MR | Zbl

[7] Leonenko N., Orsingher E., “Limit theorems for solutions of the Burgers equation with Gaussian and non-Gaussian initial conditions”, Teoriya veroyatn. i ee primeneniya, 40:2 (1995), 387–403 | MR | Zbl

[8] Surgailis D., Woyczynsky W. A., “Burgers' equation with non-local shot-noise data”, J. Appl. Probab., 31 (1994), 351–362 | DOI | MR

[9] Hsing T. L., Teugels J. L., “Extremal properties of shot noise processes”, Adv. in Appl. Probab., 21 (1989), 513–525 | DOI | MR | Zbl

[10] Shiryaev A. N., Veroyatnost, Nauka, M., 1980 | Zbl

[11] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987

[12] Burton R., Waymire E., “Scaling limits for associated random measures”, Ann. Probab., 13:4 (1985), 1267–1278 | DOI | MR | Zbl

[13] Esary J. D., Proschan F., Walkup D. W., “Association of random variables, with applications”, Ann. Math. Statist., 38 (1967), 1466–1474 | DOI | MR | Zbl

[14] Newman C. M., Wright A. L., “An invariance principle for certain dependent sequences”, Ann. Probab., 9:4 (1981), 671–675 | DOI | MR | Zbl