The number of periodic solutions of polynomial differential equations
Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 720-727
Cet article a éte moissonné depuis la source Math-Net.Ru
We estimate the number of periodic solutions for special classes of $n$th-order ordinary differential equations with variable coefficients.
@article{MZM_1998_64_5_a8,
author = {A. A. Panov},
title = {The number of periodic solutions of polynomial differential equations},
journal = {Matemati\v{c}eskie zametki},
pages = {720--727},
year = {1998},
volume = {64},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a8/}
}
A. A. Panov. The number of periodic solutions of polynomial differential equations. Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 720-727. http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a8/
[1] Arnold V. I., Ilyashenko Yu. S., “Obyknovennye differentsialnye uravneniya”, Dinamicheskie sistemy, Itogi nauki i tekhn. Sovrem. probl. matem. Fundament. napravleniya, 1, VINITI, M., 1985, 7–149
[2] Pliss V. A., “O chisle periodicheskikh reshenii uravneniya s polinomialnoi pravoi chastyu”, Dokl. AN SSSR, 127:5 (1959), 965–968 | MR | Zbl
[3] Shahshahani S., “Periodic solutions of polynomial first order differential equations”, Nonlinear Anal., 5:2 (1981), 157–165 | DOI | MR | Zbl
[4] Stepanov V. V., Kurs differentsialnykh uravnenii, GITTL, M., 1952
[5] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989