The number of periodic solutions of polynomial differential equations
Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 720-727

Voir la notice de l'article provenant de la source Math-Net.Ru

We estimate the number of periodic solutions for special classes of $n$th-order ordinary differential equations with variable coefficients.
@article{MZM_1998_64_5_a8,
     author = {A. A. Panov},
     title = {The number of periodic solutions of polynomial differential equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {720--727},
     publisher = {mathdoc},
     volume = {64},
     number = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a8/}
}
TY  - JOUR
AU  - A. A. Panov
TI  - The number of periodic solutions of polynomial differential equations
JO  - Matematičeskie zametki
PY  - 1998
SP  - 720
EP  - 727
VL  - 64
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a8/
LA  - ru
ID  - MZM_1998_64_5_a8
ER  - 
%0 Journal Article
%A A. A. Panov
%T The number of periodic solutions of polynomial differential equations
%J Matematičeskie zametki
%D 1998
%P 720-727
%V 64
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a8/
%G ru
%F MZM_1998_64_5_a8
A. A. Panov. The number of periodic solutions of polynomial differential equations. Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 720-727. http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a8/