Borel resolvability of compact spaces and their subspaces
Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 701-712.

Voir la notice de l'article provenant de la source Math-Net.Ru

The presence of disjoint dense (Borel) subsets in Tychonoff cubes, Borel subspaces of Tychonoff cubes, and dyadic compacta is examined. Several problems are stated.
@article{MZM_1998_64_5_a6,
     author = {V. I. Malykhin},
     title = {Borel resolvability of compact spaces and their subspaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {701--712},
     publisher = {mathdoc},
     volume = {64},
     number = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a6/}
}
TY  - JOUR
AU  - V. I. Malykhin
TI  - Borel resolvability of compact spaces and their subspaces
JO  - Matematičeskie zametki
PY  - 1998
SP  - 701
EP  - 712
VL  - 64
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a6/
LA  - ru
ID  - MZM_1998_64_5_a6
ER  - 
%0 Journal Article
%A V. I. Malykhin
%T Borel resolvability of compact spaces and their subspaces
%J Matematičeskie zametki
%D 1998
%P 701-712
%V 64
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a6/
%G ru
%F MZM_1998_64_5_a6
V. I. Malykhin. Borel resolvability of compact spaces and their subspaces. Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 701-712. http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a6/

[1] Hewitt E., “A problem of set-theoretic topology”, Duke Math. J., 10 (1943), 309–333 | DOI | MR | Zbl

[2] Katetov M., “O topologicheskikh prostranstvakh, ne soderzhaschikh plotnykh diz'yunktnykh podmnozhestv”, Matem. sb., 21:1 (1947), 3–12 | MR

[3] Velichko N. V., “K teorii razlozhimykh prostranstv”, Matem. zametki, 19:1 (1976), 109–114 | MR | Zbl

[4] Pytkeev E. G., “O maksimalno razlozhimykh prostranstvakh”, Tr. MIAN, 154, Nauka, M., 1983, 209–213 | MR | Zbl

[5] Comfort W. W., Garcia-Ferreira S., “Resolvability: a selective survey and some new results”, Topology Appl., 74 (1996), 149–167 | DOI | MR | Zbl

[6] Malykhin V. I., “Ekstremalno-nesvyaznye i blizkie k nim gruppy”, Dokl. AN SSSR, 220:1 (1975), 27–30 | MR | Zbl

[7] Comfort W. W., van Mill J., “Groups with only resolvable group topologies”, Proc. Amer. Math. Soc., 120 (1994), 687–696 | DOI | MR | Zbl

[8] Ceder J., “On maximally Borel resolvable spaces”, Rev. Roumaine Math. Pures Appl., 11 (1966), 89–94 | MR | Zbl

[9] Jimenez R., Malykhin V. I., “Structure resolvability”, Comment. Math. Univ. Carolin., 39:2 (1998), 379–388 | MR

[10] Iekh T., Teoriya mnozhestv i metod forsinga, Mir, M., 1973

[11] Efimov B. A., “Diadicheskie bikompakty”, Tr. MMO, 14, URSS, M., 1965, 211–247 | MR

[12] Malykhin V. I., “Maksimalnaya razlozhimost ogranichennykh grupp”, Matem. zametki (to appear)

[13] Sharma P. L., Sharma S., “Resolution properties in generalized $k$-spaces”, Topology Appl., 29 (1989), 61–66 | DOI