Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1998_64_5_a6, author = {V. I. Malykhin}, title = {Borel resolvability of compact spaces and their subspaces}, journal = {Matemati\v{c}eskie zametki}, pages = {701--712}, publisher = {mathdoc}, volume = {64}, number = {5}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a6/} }
V. I. Malykhin. Borel resolvability of compact spaces and their subspaces. Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 701-712. http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a6/
[1] Hewitt E., “A problem of set-theoretic topology”, Duke Math. J., 10 (1943), 309–333 | DOI | MR | Zbl
[2] Katetov M., “O topologicheskikh prostranstvakh, ne soderzhaschikh plotnykh diz'yunktnykh podmnozhestv”, Matem. sb., 21:1 (1947), 3–12 | MR
[3] Velichko N. V., “K teorii razlozhimykh prostranstv”, Matem. zametki, 19:1 (1976), 109–114 | MR | Zbl
[4] Pytkeev E. G., “O maksimalno razlozhimykh prostranstvakh”, Tr. MIAN, 154, Nauka, M., 1983, 209–213 | MR | Zbl
[5] Comfort W. W., Garcia-Ferreira S., “Resolvability: a selective survey and some new results”, Topology Appl., 74 (1996), 149–167 | DOI | MR | Zbl
[6] Malykhin V. I., “Ekstremalno-nesvyaznye i blizkie k nim gruppy”, Dokl. AN SSSR, 220:1 (1975), 27–30 | MR | Zbl
[7] Comfort W. W., van Mill J., “Groups with only resolvable group topologies”, Proc. Amer. Math. Soc., 120 (1994), 687–696 | DOI | MR | Zbl
[8] Ceder J., “On maximally Borel resolvable spaces”, Rev. Roumaine Math. Pures Appl., 11 (1966), 89–94 | MR | Zbl
[9] Jimenez R., Malykhin V. I., “Structure resolvability”, Comment. Math. Univ. Carolin., 39:2 (1998), 379–388 | MR
[10] Iekh T., Teoriya mnozhestv i metod forsinga, Mir, M., 1973
[11] Efimov B. A., “Diadicheskie bikompakty”, Tr. MMO, 14, URSS, M., 1965, 211–247 | MR
[12] Malykhin V. I., “Maksimalnaya razlozhimost ogranichennykh grupp”, Matem. zametki (to appear)
[13] Sharma P. L., Sharma S., “Resolution properties in generalized $k$-spaces”, Topology Appl., 29 (1989), 61–66 | DOI