On the structure of rigid semistable sheaves on algebraic surfaces
Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 692-700.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S$ be a smooth projective surface, let $K$ be the canonical class of $S$ and let $H$ be an ample divisor such that $H\cdot K0$. We prove that for any rigid sheaf $F$ ($\operatorname{Ext}^1(F,F)=0$) that is Mumford–Takemoto semistable with respect to $H$ there exists an exceptional set $(E_1,\dots,E_n)$ of sheaves on $S$ such that $F$ can be constructed from $\{E_i\}$ by means of a finite sequence of extensions.
@article{MZM_1998_64_5_a5,
     author = {B. V. Karpov},
     title = {On the structure of rigid semistable sheaves on algebraic surfaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {692--700},
     publisher = {mathdoc},
     volume = {64},
     number = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a5/}
}
TY  - JOUR
AU  - B. V. Karpov
TI  - On the structure of rigid semistable sheaves on algebraic surfaces
JO  - Matematičeskie zametki
PY  - 1998
SP  - 692
EP  - 700
VL  - 64
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a5/
LA  - ru
ID  - MZM_1998_64_5_a5
ER  - 
%0 Journal Article
%A B. V. Karpov
%T On the structure of rigid semistable sheaves on algebraic surfaces
%J Matematičeskie zametki
%D 1998
%P 692-700
%V 64
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a5/
%G ru
%F MZM_1998_64_5_a5
B. V. Karpov. On the structure of rigid semistable sheaves on algebraic surfaces. Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 692-700. http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a5/

[1] Kuleshov S. A., Orlov D. O., “Isklyuchitelnye puchki na poverkhnostyakh del Petstso”, Izv. RAN. Ser. matem., 58:3 (1994), 59–93

[2] Kuleshov S. A., Isklyuchitelnye i zhestkie puchki na poverkhnostyakh s antikanonicheskim klassom bez bazisnykh komponent, Preprint No 1, Matem. kolledzh NMU, M., 1994

[3] Okonek K., Shneider M., Shpindler Kh., Vektornye rassloeniya na kompleksnykh proektivnykh prostranstvakh, Mir, M., 1984 | Zbl

[4] Mukai S., “On the moduli spaces of bundles on K3 surfaces, I”, Vector Bundles, eds. Atiyah et al., Oxford Univ. Press, 1986, 67–83