Limit sets at infinity for liftings of non-self-intersecting curves on the torus to the plane
Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 667-679
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper Anosov's initial description of the sets mentioned in the title is completed. It is proved that there are four types of such sets and that all of these types are realizable.
@article{MZM_1998_64_5_a3,
author = {A. A. Glutsyuk},
title = {Limit sets at infinity for liftings of non-self-intersecting curves on the torus to the plane},
journal = {Matemati\v{c}eskie zametki},
pages = {667--679},
publisher = {mathdoc},
volume = {64},
number = {5},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a3/}
}
TY - JOUR AU - A. A. Glutsyuk TI - Limit sets at infinity for liftings of non-self-intersecting curves on the torus to the plane JO - Matematičeskie zametki PY - 1998 SP - 667 EP - 679 VL - 64 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a3/ LA - ru ID - MZM_1998_64_5_a3 ER -
A. A. Glutsyuk. Limit sets at infinity for liftings of non-self-intersecting curves on the torus to the plane. Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 667-679. http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a3/