Limit sets at infinity for liftings of non-self-intersecting curves on the torus to the plane
Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 667-679.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper Anosov's initial description of the sets mentioned in the title is completed. It is proved that there are four types of such sets and that all of these types are realizable.
@article{MZM_1998_64_5_a3,
     author = {A. A. Glutsyuk},
     title = {Limit sets at infinity for liftings of non-self-intersecting curves on the torus to the plane},
     journal = {Matemati\v{c}eskie zametki},
     pages = {667--679},
     publisher = {mathdoc},
     volume = {64},
     number = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a3/}
}
TY  - JOUR
AU  - A. A. Glutsyuk
TI  - Limit sets at infinity for liftings of non-self-intersecting curves on the torus to the plane
JO  - Matematičeskie zametki
PY  - 1998
SP  - 667
EP  - 679
VL  - 64
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a3/
LA  - ru
ID  - MZM_1998_64_5_a3
ER  - 
%0 Journal Article
%A A. A. Glutsyuk
%T Limit sets at infinity for liftings of non-self-intersecting curves on the torus to the plane
%J Matematičeskie zametki
%D 1998
%P 667-679
%V 64
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a3/
%G ru
%F MZM_1998_64_5_a3
A. A. Glutsyuk. Limit sets at infinity for liftings of non-self-intersecting curves on the torus to the plane. Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 667-679. http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a3/

[1] Weil A., “Les familles de courbes sur le tore”, Mat. Sb. Nov. Ser., 1:5 (1936), 779–781 | Zbl

[2] Markley N. G., “The Poincaré–Bendixon theorem for the Klein bottle”, Trans. Amer. Math. Soc., 135 (1969), 159–165 | DOI | MR | Zbl

[3] Pupko V. I., “O nesamoperesekayuschikhsya krivykh na zamknutykh poverkhnostyakh”, Dokl. AN SSSR, 177:2 (1967), 272–274 | MR | Zbl

[4] Anosov D. V., “O povedenii traektorii na evklidovoi ploskosti i ploskosti Lobachevskogo, nakryvayuschikh traektorii potokov na zamknutykh poverkhnostyakh, I”, Izv. AN SSSR. Ser. matem., 51:1 (1988), 16–43 | MR

[5] Anosov D. V., “O povedenii traektorii na evklidovoi ploskosti i ploskosti Lobachevskogo, nakryvayuschikh traektorii potokov na zamknutykh poverkhnostyakh, II”, Izv. AN SSSR. Ser. matem., 52:3 (1989), 451–478 | MR

[6] Anosov D. V., “Flows on closed surfaces and behavior of trajectories lifted to the universal covering plane”, J. Dynam. Control Systems, 1:1 (1995), 125–138 | DOI | MR | Zbl