Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1998_64_5_a3, author = {A. A. Glutsyuk}, title = {Limit sets at infinity for liftings of non-self-intersecting curves on the torus to the plane}, journal = {Matemati\v{c}eskie zametki}, pages = {667--679}, publisher = {mathdoc}, volume = {64}, number = {5}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a3/} }
TY - JOUR AU - A. A. Glutsyuk TI - Limit sets at infinity for liftings of non-self-intersecting curves on the torus to the plane JO - Matematičeskie zametki PY - 1998 SP - 667 EP - 679 VL - 64 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a3/ LA - ru ID - MZM_1998_64_5_a3 ER -
A. A. Glutsyuk. Limit sets at infinity for liftings of non-self-intersecting curves on the torus to the plane. Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 667-679. http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a3/
[1] Weil A., “Les familles de courbes sur le tore”, Mat. Sb. Nov. Ser., 1:5 (1936), 779–781 | Zbl
[2] Markley N. G., “The Poincaré–Bendixon theorem for the Klein bottle”, Trans. Amer. Math. Soc., 135 (1969), 159–165 | DOI | MR | Zbl
[3] Pupko V. I., “O nesamoperesekayuschikhsya krivykh na zamknutykh poverkhnostyakh”, Dokl. AN SSSR, 177:2 (1967), 272–274 | MR | Zbl
[4] Anosov D. V., “O povedenii traektorii na evklidovoi ploskosti i ploskosti Lobachevskogo, nakryvayuschikh traektorii potokov na zamknutykh poverkhnostyakh, I”, Izv. AN SSSR. Ser. matem., 51:1 (1988), 16–43 | MR
[5] Anosov D. V., “O povedenii traektorii na evklidovoi ploskosti i ploskosti Lobachevskogo, nakryvayuschikh traektorii potokov na zamknutykh poverkhnostyakh, II”, Izv. AN SSSR. Ser. matem., 52:3 (1989), 451–478 | MR
[6] Anosov D. V., “Flows on closed surfaces and behavior of trajectories lifted to the universal covering plane”, J. Dynam. Control Systems, 1:1 (1995), 125–138 | DOI | MR | Zbl