On the asymptotic integration of systems of linear differential equations with oscillatory decreasing coefficients
Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 658-666.

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of linear differential equations with oscillatory decreasing coefficients is considered. The coefficients have the form $t^{-\alpha}a(t)$, $\alpha>0$ where $a(t)$ is a trigonometric polynomial with an arbitrary set of frequencies. The asymptotic behavior of the solutions of this system as $t\to\infty$ is studied. We construct an invertible (for sufficiently large $t$) change of variables that takes the original system to a system not containing oscillatory coefficients in its principal part. The study of the asymptotic behavior of the solutions of the transformed system is a simpler problem. As an example, the following equation is considered: $$ \frac{d^2x}{dt^2}+\biggl(1+\frac{\sin\lambda t}{t^\alpha}\biggr)x=0, $$ where $\lambda$ and $\alpha$, $0\alpha\le1$, are real numbers.
@article{MZM_1998_64_5_a2,
     author = {V. Sh. Burd and V. A. Karakulin},
     title = {On the asymptotic integration of systems of linear differential equations with oscillatory decreasing coefficients},
     journal = {Matemati\v{c}eskie zametki},
     pages = {658--666},
     publisher = {mathdoc},
     volume = {64},
     number = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a2/}
}
TY  - JOUR
AU  - V. Sh. Burd
AU  - V. A. Karakulin
TI  - On the asymptotic integration of systems of linear differential equations with oscillatory decreasing coefficients
JO  - Matematičeskie zametki
PY  - 1998
SP  - 658
EP  - 666
VL  - 64
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a2/
LA  - ru
ID  - MZM_1998_64_5_a2
ER  - 
%0 Journal Article
%A V. Sh. Burd
%A V. A. Karakulin
%T On the asymptotic integration of systems of linear differential equations with oscillatory decreasing coefficients
%J Matematičeskie zametki
%D 1998
%P 658-666
%V 64
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a2/
%G ru
%F MZM_1998_64_5_a2
V. Sh. Burd; V. A. Karakulin. On the asymptotic integration of systems of linear differential equations with oscillatory decreasing coefficients. Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 658-666. http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a2/

[1] Levinson N., “The asymptotic nature of solution of linear differential equations”, Duke Math. J., 15 (1948), 111–126 | DOI | MR | Zbl

[2] Rappoport I. M., O nekotorykh asimptoticheskikh metodakh v teorii differentsialnykh uravnenii, Izd-vo AN USSR, Kiev, 1954

[3] Hartman P., Wintner A., “Asymptotic integration of linear differential equation”, Amer. J. Math., 77 (1955), 45–86, 932 | DOI | MR | Zbl

[4] Fedoryuk M. V., “Asimptoticheskie metody v teorii odnomernykh singulyarnykh differentsialnykh operatorov”, Tr. MMO, 15, URSS, M., 1966, 296–345 | MR

[5] Harris W. A. Jr., Lutz D. A., “On the asymptotic integration of linear differential systems”, J. Math. Anal. Appl., 48:1 (1974), 1–16 | DOI | MR | Zbl

[6] Harris W. A. Jr., Lutz D. A., “A unified theory of asymptotic integration”, J. Math. Anal. Appl., 57 (1977), 571–586 | DOI | MR | Zbl

[7] Bellman R., Teoriya ustoichivosti reshenii differentsialnykh uravnenii, IL, M., 1954

[8] Koddington E. V., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958

[9] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[10] Chezaro L., Asimptoticheskoe povedenie i ustoichivost reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1964

[11] Eastham M. S. P., The Asymptotic Solution of Linear Differential Systems, London Math. Soc. Monographs (N.S.), 4, Oxford Univ. Press, New York, 1989 | MR | Zbl

[12] Shtokalo I. Z., “Kriterii ustoichivosti i neustoichivosti reshenii lineinykh differentsialnykh uravnenii s pochti-periodicheskimi koeffitsientami”, Matem. sb., 19 (61):2 (1946), 263–286 | MR | Zbl

[13] Shtokalo I. Z., Lineinye differentsialnye uravneniya s peremennymi koeffitsientami, Izd-vo AN USSR, Kiev, 1960

[14] Samokhin Yu. A., Fomin V. N., “Metod issledovaniya ustoichivosti reshenii lineinykh sistem, podverzhennykh deistviyu parametricheskikh nagruzok s nepreryvnym spektrom”, Sib. matem. zh., 17:4 (1976), 926–931 | MR | Zbl

[15] Samokhin Yu. A., Fomin V. N., “Asimptoticheskoe integrirovanie sistem differentsialnykh uravnenii s kolebatelno ubyvayuschimi koeffitsientami”, Problemy teorii periodicheskikh dvizhenii, 5, Izhevsk, 1981, 45–50 | MR

[16] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966

[17] Daletskii Yu. A., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970

[18] Wintner A., “The adiabatic linear oscillator”, Amer. J. Math., 68 (1946), 385–397 | DOI | MR | Zbl

[19] Wintner A., “Asymptotic integration of the adiabatic oscillator”, Amer. J. Math., 69 (1946), 251–272 | DOI | MR

[20] Harris W. A. Jr., Lutz D. A., “Asymptotic integration of adiabatic oscillators”, J. Math. Anal. Appl., 51:1 (1975), 76–93 | DOI | MR | Zbl