On a problem of Zygmund
Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 749-762

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that there exists an integrable function on $[0,1]^2$ whose integral is nondifferentiable in each direction belonging to a set everywhere dense in $[0,2\pi]$ but is strongly differentiable.
@article{MZM_1998_64_5_a11,
     author = {A. M. Stokolos},
     title = {On a problem of {Zygmund}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {749--762},
     publisher = {mathdoc},
     volume = {64},
     number = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a11/}
}
TY  - JOUR
AU  - A. M. Stokolos
TI  - On a problem of Zygmund
JO  - Matematičeskie zametki
PY  - 1998
SP  - 749
EP  - 762
VL  - 64
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a11/
LA  - ru
ID  - MZM_1998_64_5_a11
ER  - 
%0 Journal Article
%A A. M. Stokolos
%T On a problem of Zygmund
%J Matematičeskie zametki
%D 1998
%P 749-762
%V 64
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a11/
%G ru
%F MZM_1998_64_5_a11
A. M. Stokolos. On a problem of Zygmund. Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 749-762. http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a11/