Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1998_64_5_a11, author = {A. M. Stokolos}, title = {On a problem of {Zygmund}}, journal = {Matemati\v{c}eskie zametki}, pages = {749--762}, publisher = {mathdoc}, volume = {64}, number = {5}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a11/} }
A. M. Stokolos. On a problem of Zygmund. Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 749-762. http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a11/
[1] Jessen B., Marcinkiewicz J., Zygmund A., “Note on the differentiability of multiple integrals”, Fund. Math., 25 (1935), 217–234 | Zbl
[2] Saks S., “On the strong derivatives of functions of intervals”, Fund. Math., 25 (1935), 235–252 | Zbl
[3] Zigmund A., Trigonometricheskie ryady, Mir, M., 1965
[4] Gusman M., Differentsirovanie integralov v $\mathbb R^n$, Mir, M., 1978
[5] Marstrand J., “A counter-example in the theory of strong differentiation”, Bull. London Math. Soc., 9 (1977), 209–211 | DOI | MR | Zbl
[6] Lopez M. B., “A negative result in differentiation theory”, Studia Math., 72 (1982), 173–182 | MR | Zbl
[7] Stokolos A. M., “An inequality for equimeasurable rearrangements and its application in the theory of differentiation of integrals”, Anal. Math., 9 (1983), 133–146 | DOI | MR | Zbl
[8] Sprinzhuk V. G., Metricheskaya teoriya diofantovykh priblizhenii, Nauka, M., 1977