$M$-sets for three classes of series in the Faber–Schauder system
Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 734-748
Cet article a éte moissonné depuis la source Math-Net.Ru
Three classes of series in the Faber–Schauder system, differing in conditions on the character of vanishing of their coefficients, are considered; the $M$-sets for these classes of series are compared. The union of uniqueness sets for these classes is studied.
@article{MZM_1998_64_5_a10,
author = {V. A. Skvortsov and N. N. Kholshchevnikova},
title = {$M$-sets for three classes of series in the {Faber{\textendash}Schauder} system},
journal = {Matemati\v{c}eskie zametki},
pages = {734--748},
year = {1998},
volume = {64},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a10/}
}
V. A. Skvortsov; N. N. Kholshchevnikova. $M$-sets for three classes of series in the Faber–Schauder system. Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 734-748. http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a10/
[1] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984 | Zbl
[2] Kholschevnikova N. N., “O mnozhestvakh edinstvennosti dlya ryadov po razlichnym sistemam funktsii”, Izv. RAN. Ser. matem., 57:1 (1993), 167–182
[3] Kholschevnikova N. N., “O svoistvakh tonkikh mnozhestv dlya trigonometricheskikh i nekotorykh drugikh ryadov”, Dokl. RAN, 327:4–6 (1992), 446–449
[4] Kholschevnikova N. N., “Obobschennaya teorema Bari dlya sistemy Uolsha”, Matem. sb., 183:10 (1992), 3–12 | MR