$M$-sets for three classes of series in the Faber--Schauder system
Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 734-748.

Voir la notice de l'article provenant de la source Math-Net.Ru

Three classes of series in the Faber–Schauder system, differing in conditions on the character of vanishing of their coefficients, are considered; the $M$-sets for these classes of series are compared. The union of uniqueness sets for these classes is studied.
@article{MZM_1998_64_5_a10,
     author = {V. A. Skvortsov and N. N. Kholshchevnikova},
     title = {$M$-sets for three classes of series in the {Faber--Schauder} system},
     journal = {Matemati\v{c}eskie zametki},
     pages = {734--748},
     publisher = {mathdoc},
     volume = {64},
     number = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a10/}
}
TY  - JOUR
AU  - V. A. Skvortsov
AU  - N. N. Kholshchevnikova
TI  - $M$-sets for three classes of series in the Faber--Schauder system
JO  - Matematičeskie zametki
PY  - 1998
SP  - 734
EP  - 748
VL  - 64
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a10/
LA  - ru
ID  - MZM_1998_64_5_a10
ER  - 
%0 Journal Article
%A V. A. Skvortsov
%A N. N. Kholshchevnikova
%T $M$-sets for three classes of series in the Faber--Schauder system
%J Matematičeskie zametki
%D 1998
%P 734-748
%V 64
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a10/
%G ru
%F MZM_1998_64_5_a10
V. A. Skvortsov; N. N. Kholshchevnikova. $M$-sets for three classes of series in the Faber--Schauder system. Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 734-748. http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a10/

[1] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984 | Zbl

[2] Kholschevnikova N. N., “O mnozhestvakh edinstvennosti dlya ryadov po razlichnym sistemam funktsii”, Izv. RAN. Ser. matem., 57:1 (1993), 167–182

[3] Kholschevnikova N. N., “O svoistvakh tonkikh mnozhestv dlya trigonometricheskikh i nekotorykh drugikh ryadov”, Dokl. RAN, 327:4–6 (1992), 446–449

[4] Kholschevnikova N. N., “Obobschennaya teorema Bari dlya sistemy Uolsha”, Matem. sb., 183:10 (1992), 3–12 | MR