Conjugacy problem in a class of 2-groups
Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 573-583
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper, the conjugacy problem for elements of Grigorchuk 2-groups is solved. Each group is regarded from the viewpoint of rearrangement-like transformations of the interval $(0,1)$ and from the viewpoint of wreath products of groups. Several approaches are indicated that allow one to establish conjugacy conditions of elements.
@article{MZM_1998_64_4_a9,
author = {Yu. G. Leonov},
title = {Conjugacy problem in a class of 2-groups},
journal = {Matemati\v{c}eskie zametki},
pages = {573--583},
year = {1998},
volume = {64},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a9/}
}
Yu. G. Leonov. Conjugacy problem in a class of 2-groups. Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 573-583. http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a9/
[1] Grigorchuk R. I., “K probleme Bernsaida o periodicheskikh gruppakh”, Funktsion. analiz i ego prilozh., 14:1 (1980), 53–54 | MR | Zbl
[2] Grigorchuk R. I., “Stepeni rosta konechno porozhdennykh grupp i teoriya invariantnykh srednikh”, Izv. AN SSSR. Ser. matem., 1984, no. 5, 939–985 | MR
[3] Suschanskii V. I., “Spleteniya i periodicheskie faktorizuemye gruppy”, Matem. sb., 180:8 (1989), 1073–1091 | Zbl
[4] Gupta N., Sidki S., “Some infinite $p$-groups”, Algebra i logika, 22:5 (1983), 584–589 | MR | Zbl
[5] Wilson J. S., Zalesskii P. A., “Conjugacy separability of certain torsion groups”, Arch. Math. (Basel), 68 (1997), 441–449 | MR | Zbl