A priori estimates of strong solutions of semilinear parabolic equations
Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 564-572

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an initial boundary value problem for the semilinear parabolic equation $$ \frac{\partial u}{\partial t} +\sum_{|\alpha|\le2b}a_\alpha(x,t)D^\alpha u =f(x,t,u,Du,\dots,D^{2b-1}u), $$ where the left-hand side is a linear uniformly parabolic operator of order $2b$. We prove sufficient growth conditions on the function $f$ with respect to the variables $u,Du,\dots,D^{2b-1}u$, such that the apriori estimate of the norm of the solution in the Sobolev space $W_p^{2b,1}$ is expressible in terms of the low-order norm in the Lebesgue space of integrable functions $L_{l,m}$.
@article{MZM_1998_64_4_a8,
     author = {G. G. Laptev},
     title = {A priori estimates of strong solutions of semilinear parabolic equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {564--572},
     publisher = {mathdoc},
     volume = {64},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a8/}
}
TY  - JOUR
AU  - G. G. Laptev
TI  - A priori estimates of strong solutions of semilinear parabolic equations
JO  - Matematičeskie zametki
PY  - 1998
SP  - 564
EP  - 572
VL  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a8/
LA  - ru
ID  - MZM_1998_64_4_a8
ER  - 
%0 Journal Article
%A G. G. Laptev
%T A priori estimates of strong solutions of semilinear parabolic equations
%J Matematičeskie zametki
%D 1998
%P 564-572
%V 64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a8/
%G ru
%F MZM_1998_64_4_a8
G. G. Laptev. A priori estimates of strong solutions of semilinear parabolic equations. Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 564-572. http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a8/