On the Riesz basis property of the root functions in certain regular boundary value problems
Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 558-563

Voir la notice de l'article provenant de la source Math-Net.Ru

The differential operator $ly=y''+q(x)y$ with periodic (antiperiodic) boundary conditions that are not strongly regular is studied. It is assumed that $q(x)$ is a complex-valued function of class $C^{(4)}[0,1]$ and $q(0)\ne q(1)$. We prove that the system of root functions of this operator forms a Riesz basis in the space $L_2(0,1)$.
@article{MZM_1998_64_4_a7,
     author = {N. B. Kerimov and Kh. R. Mamedov},
     title = {On the {Riesz} basis property of the root functions in certain regular boundary value problems},
     journal = {Matemati\v{c}eskie zametki},
     pages = {558--563},
     publisher = {mathdoc},
     volume = {64},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a7/}
}
TY  - JOUR
AU  - N. B. Kerimov
AU  - Kh. R. Mamedov
TI  - On the Riesz basis property of the root functions in certain regular boundary value problems
JO  - Matematičeskie zametki
PY  - 1998
SP  - 558
EP  - 563
VL  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a7/
LA  - ru
ID  - MZM_1998_64_4_a7
ER  - 
%0 Journal Article
%A N. B. Kerimov
%A Kh. R. Mamedov
%T On the Riesz basis property of the root functions in certain regular boundary value problems
%J Matematičeskie zametki
%D 1998
%P 558-563
%V 64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a7/
%G ru
%F MZM_1998_64_4_a7
N. B. Kerimov; Kh. R. Mamedov. On the Riesz basis property of the root functions in certain regular boundary value problems. Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 558-563. http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a7/